Py.Cafe

Feanor1992/

Banknotes Data Analysis Dashboard

Dash Demo on Interactive Data Visualization

DocsPricing
  • app.py
  • banknotesData.csv
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# Import required libraries
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from dash import Dash, dcc, html, Input, Output, State
import dash_bootstrap_components as dbc
from dash import dash_table
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
from scipy.stats import chi2_contingency
from statsmodels.tsa.arima.model import ARIMA  # Replaced Prophet with ARIMA from statsmodels
import networkx as nx

# Load the dataset
df = pd.read_csv('banknotesData.csv')

# Fill missing values: numeric columns with median and string columns with "Unknown"
num_cols = df.select_dtypes(include=[np.number]).columns
str_cols = df.select_dtypes(include=[object]).columns

# Fill numeric columns with median
for col in num_cols:
    df[col] = df[col].fillna(df[col].median())

# Fill string columns with "Unknown"
for col in str_cols:
    df[col] = df[col].fillna("Unknown")

# Convert the 'deathDate' column to numeric type, coercing errors to NaN
df['deathDate'] = pd.to_numeric(df['deathDate'], errors='coerce')

# 1. Create a flag 'isPioneer' based on whether the person is known for being the first
df['isPioneer'] = df['knownForBeingFirst'].apply(lambda x: True if str(x).strip().lower() == "yes" else False)

# 2. Standardize the profession names to title case
df['profession_clean'] = df['profession'].str.title()

# 3. Simplified classification of professions for easier analysis
def classify_profession(prof):
    # Convert profession to lowercase for consistency
    prof_lower = str(prof).lower()
    
    # Define lists of professions for each category
    creative = ['writer', 'musician', 'visual artist', 'performer']
    political = ['politician', 'head of gov\'t', 'monarch', 'founder']
    
    # Check and return category
    if prof_lower in creative:
        return 'Creative'
    elif prof_lower in political:
        return 'Political'
    elif prof_lower == 'revolutionary':
        return 'Revolutionary'
    elif prof_lower == 'military':
        return 'Military'
    elif prof_lower == 'religious figure':
        return 'Religious'
    elif prof_lower == 'stem':
        return 'STEM'
    elif prof_lower == 'activist':
        return 'Activist'
    elif prof_lower == 'educator':
        return 'Educator'
    elif prof_lower == 'other':
        return 'Historical Figure'  # Default for "Other"
    else:
        return 'Unknown'

# Apply profession classification
df['prof_category'] = df['profession_clean'].apply(classify_profession)

# 4. Create a lifeSpan feature if data is available
def compute_lifespan(row):
    try:
        return abs(float(row['deathDate']) - float(row['firstAppearanceDate']))
    except:
        return np.nan

df['lifeSpan'] = df.apply(compute_lifespan, axis=1)

# Define filter options for the dashboard
country_options = [{'label': country, 'value': country} for country in sorted(df['country'].unique())]
gender_options = [{'label': gender, 'value': gender} for gender in sorted(df['gender'].unique())]
pioneer_options = [
    {'label': 'Pioneers (Yes)', 'value': True},
    {'label': 'Non-Pioneers (No)', 'value': False}
]
profession_options = [{'label': prof, 'value': prof} for prof in sorted(df['profession_clean'].unique())]

# Filter for the geography tab by profession category
geo_category_options = [{'label': prof, 'value': prof} for prof in sorted(df['profession_clean'].unique())]
geo_category_options.insert(0, {'label': 'All', 'value': 'all'})

# Define range slider limits
min_year = int(df['firstAppearanceDate'].min())
max_year = int(df['firstAppearanceDate'].max())
min_bill = float(df['currentBillValue'].min())
max_bill = float(df['currentBillValue'].max())

# For network filter – by node country
network_country_options = [{'label': country, 'value': country} for country in sorted(df['country'].unique())]
network_country_options.insert(0, {'label': 'All', 'value': 'all'})

# Set up the Dash app with a dark theme
external_stylesheets = [dbc.themes.DARKLY]
app = Dash(__name__, external_stylesheets=external_stylesheets)
app.title = 'Banknotes Data Dashboard'

# Define the app layout
app.layout = dbc.Container([
    dbc.Row(
        dbc.Col(
            html.H1(
                'Banknotes Data Dashboard',
                className='text-center text-light my-4'),
            width=12
        )
    ),
    # Global Filters with a Reset Button
    dbc.Row([
        dbc.Col([
            html.Label('Country', className='text-light'),
            dcc.Dropdown(
                id='country-filter',
                options=country_options,
                multi=True,
                className='text-dark',
                placeholder='Select country...'
            )
        ], md=2),
        dbc.Col([
            html.Label('Gender', className='text-light'),
            dcc.Dropdown(
                id='gender-filter',
                options=gender_options,
                multi=True,
                className='text-dark',
                placeholder='Select gender...'
            )
        ], md=2),
        dbc.Col([
            html.Label('Pioneer', className='text-light'),
            dcc.RadioItems(
                id='pioneer-filter',
                options=pioneer_options,
                value=None,
                inline=True,
                labelStyle={'margin-right': '10px'}
            )
        ], md=2),
        dbc.Col([
            html.Label('Profession', className='text-light'),
            dcc.Dropdown(
                id='profession-filter',
                options=profession_options,
                multi=True,
                className='text-dark',
                placeholder='Select profession...'
            )
        ], md=2),
        dbc.Col([
            html.Label('First Appearance Year', className='text-light'),
            dcc.RangeSlider(
                id='year-slider',
                min=min_year,
                max=max_year,
                step=1,
                marks={str(year): str(year) for year in range(min_year, max_year+1, max(1, (max_year-min_year)//10))},
                value=[min_year, max_year]
            )
        ], md=2),
        dbc.Col([
            html.Label('Bill Value', className='text-light'),
            dcc.RangeSlider(
                id='bill-slider',
                min=min_bill,
                max=max_bill,
                step=(max_bill-min_bill)/100,
                marks={str(round(val,1)): str(round(val,1)) for val in np.linspace(min_bill, max_bill, num=5)},
                value=[min_bill, max_bill]
            )
        ], md=2)
    ], className='mb-4'),
    dbc.Row([
        dbc.Col(
            dbc.Button('Reset Filters', id='reset-button', color='secondary', className='mb-2'),
            width=2
        )
    ]),
    # Tabs for different analyses
    dbc.Tabs([
        dbc.Tab(label='Main Analysis', children=[
            dbc.Row([
                dbc.Col(dcc.Graph(id='bar-profession', config={'displayModeBar': False}), md=6),
                dbc.Col(dcc.Graph(id='scatter-bill-waiting', config={'displayModeBar': False}), md=6)
            ]),
            dbc.Row([
                dbc.Col(dcc.Graph(id='grouped-profession-gender', config={'displayModeBar': False}), md=6),
                dbc.Col(dcc.Graph(id='box-waiting-time', config={'displayModeBar': False}), md=6)
            ]),
            dbc.Row([
                dbc.Col(
                    dash_table.DataTable(
                        id='data-table',
                        columns=[{'name': i, 'id': i} for i in df.columns],
                        data=df.to_dict('records'),
                        filter_action='native',
                        sort_action='native',
                        page_action='native',
                        page_current=0,
                        page_size=10,
                        style_table={'overflowX': 'auto'},
                        style_header={'backgroundColor': '#303030', 'color': 'white'},
                        style_cell={'backgroundColor': '#424242', 'color': 'white', 'textAlign': 'left'}
                    ), md=12)
            ], className='mt-4')
        ]),
        dbc.Tab(label='Trends Analysis', children=[
            dbc.Row([
                dbc.Col([
                    html.Label('Group By:', className='text-light'),
                    dcc.RadioItems(
                        id='trend-groupby',
                        options=[
                            {'label': 'Gender', 'value': 'gender'},
                            {'label': 'Profession', 'value': 'profession_clean'}
                        ],
                        value='gender',
                        inline=True,
                        labelStyle={'margin-right': '10px'}
                    )
                ], md=4)
            ], className='mb-4'),
            dbc.Row([
                dbc.Col(dcc.Graph(id='trend-analysis', config={'displayModeBar': False}), md=12)
            ])
        ]),
        dbc.Tab(label='Geography Analysis', children=[
            dbc.Row([
                dbc.Col([
                    html.Label('Select Profession for Map:', className='text-light'),
                    dcc.Dropdown(
                        id='geo-category',
                        options=geo_category_options,
                        value='all',
                        className='text-dark',
                        clearable=False
                    )
                ], md=4)
            ], className='mb-4'),
            dbc.Row([
                dbc.Col(dcc.Graph(id='geo-map', config={'displayModeBar': False}), md=12)
            ])
        ]),
        dbc.Tab(label='Correlation Analysis', children=[
            dbc.Row([
                dbc.Col(dcc.Graph(id='corr-heatmap', config={'displayModeBar': False}), md=6),
                dbc.Col(dcc.Graph(id='cross-tab-heatmap', config={'displayModeBar': False}), md=6)
            ]),
            dbc.Row([
                dbc.Col(html.Div(id='chi2-result', className='text-light'), md=12)
            ])
        ]),
        dbc.Tab(label='Machine Learning', children=[
            dbc.Row([
                dbc.Col(dcc.Graph(id='ml-feature', config={'displayModeBar': False}), md=12)
            ]),
            dbc.Row([
                dbc.Col(html.Div(id='ml-metrics', className='text-light'), md=12)
            ])
        ]),
        dbc.Tab(label='Network Visualization', children=[
            dbc.Row([
                dbc.Col([
                    html.Label('Filter Nodes by Country:', className='text-light'),
                    dcc.Dropdown(
                        id='network-country-filter',
                        options=network_country_options,
                        value='all',
                        className='text-dark',
                        clearable=False
                    )
                ], md=4)
            ], className='mb-4'),
            dbc.Row([
                dbc.Col(dcc.Graph(id='network-graph', config={'displayModeBar': False}), md=12)
            ])
        ]),
        dbc.Tab(label='Forecasting', children=[
            dbc.Row([
                dbc.Col(dcc.Graph(id='forecast-graph', config={'displayModeBar': False}), md=12)
            ])
        ])
    ])
], fluid=True)

# Callback to update all visualizations based on filter inputs
@app.callback(
    [Output('bar-profession', 'figure'),
     Output('scatter-bill-waiting', 'figure'),
     Output('grouped-profession-gender', 'figure'),
     Output('box-waiting-time', 'figure'),
     Output('data-table', 'data'),
     Output('trend-analysis', 'figure'),
     Output('geo-map', 'figure'),
     Output('corr-heatmap', 'figure'),
     Output('cross-tab-heatmap', 'figure'),
     Output('chi2-result', 'children'),
     Output('ml-feature', 'figure'),
     Output('ml-metrics', 'children'),
     Output('network-graph', 'figure'),
     Output('forecast-graph', 'figure')],
    [Input('country-filter', 'value'),
     Input('gender-filter', 'value'),
     Input('pioneer-filter', 'value'),
     Input('profession-filter', 'value'),
     Input('year-slider', 'value'),
     Input('bill-slider', 'value'),
     Input('trend-groupby', 'value'),
     Input('geo-category', 'value'),
     Input('network-country-filter', 'value')]
)
def update_all(selected_countries, selected_genders, selected_pioneer, selected_professions, year_range, bill_range, trend_group, geo_profession, network_country):
    # Filter the DataFrame based on global filters
    dff = df.copy()
    if selected_countries and len(selected_countries) > 0:
        dff = dff[dff['country'].isin(selected_countries)]
    if selected_genders and len(selected_genders) > 0:
        dff = dff[dff['gender'].isin(selected_genders)]
    if selected_pioneer is not None:
        dff = dff[dff['isPioneer'] == selected_pioneer]
    if selected_professions and len(selected_professions) > 0:
        dff = dff[dff['profession_clean'].isin(selected_professions)]
    dff = dff[(dff['firstAppearanceDate'] >= year_range[0]) & (dff['firstAppearanceDate'] <= year_range[1])]
    dff = dff[(dff['currentBillValue'] >= bill_range[0]) & (dff['currentBillValue'] <= bill_range[1])]

    # If filtered data is empty, return empty figures to avoid errors
    if dff.empty:
        empty_fig = go.Figure()
        empty_fig.update_layout(template='plotly_dark', title='No data available')
        return empty_fig, empty_fig, empty_fig, empty_fig, [], empty_fig, empty_fig, empty_fig, empty_fig, 'No data available', empty_fig, 'No ML results available', empty_fig, empty_fig

    # 1. Main Analysis
    # a) Bar Chart: Count of banknotes by simplified profession category
    prof_counts = dff['prof_category'].value_counts().reset_index()
    prof_counts.columns = ['Profession Category', 'Count']
    fig_bar = px.bar(
        prof_counts,
        x='Profession Category',
        y='Count',
        text='Count',
        title='Count of Banknotes by Profession Category',
        template='plotly_dark'
    )
    fig_bar.update_traces(textposition='outside')

    # b) Scatter Plot: Bill Value vs. Waiting Time (appearanceDeathDiff)
    scatter_df = dff.dropna(subset=['appearanceDeathDiff', 'currentBillValue'])
    fig_scatter = px.scatter(
        scatter_df,
        x='currentBillValue',
        y='appearanceDeathDiff',
        hover_data=['name', 'profession_clean'],
        title='Bill Value vs. Waiting Time',
        template='plotly_dark'
    )

    # c) Grouped Bar Chart: Distribution of Profession by Gender
    fig_grouped = px.histogram(
        dff,
        x='profession_clean',
        color='gender',
        barmode='group',
        title='Distribution of Profession by Gender',
        template='plotly_dark'
    )
    fig_grouped.update_layout(xaxis_tickangle=-45)

    # d) Box Plot: Waiting Time by Pioneer Status
    dff['pioneer_label'] = dff['isPioneer'].apply(lambda x: 'Pioneer (Yes)' if x else 'Non-Pioneer (No)')
    fig_box = px.box(
        dff,
        x='pioneer_label',
        y='appearanceDeathDiff',
        color='pioneer_label',
        title='Waiting Time by Pioneer Status',
        template='plotly_dark',
        labels={'pioneer_label': 'Pioneer Status', 'appearanceDeathDiff': 'Waiting Time (years)'}
    )
    fig_box.update_layout(showlegend=False)

    # e) Data Table Update
    table_data = dff.to_dict('records')

    # 2. Trends Analysis
    # Group data by 'firstAppearanceDate' and the chosen grouping (gender or profession)
    complete_years = pd.DataFrame({'firstAppearanceDate': range(year_range[0], year_range[1] + 1)})
    trend_df = dff.groupby(['firstAppearanceDate', trend_group]).size().reset_index(name='count')
    trend_df = complete_years.merge(trend_df, on='firstAppearanceDate', how='left').fillna({'count': 0})
    if trend_group not in trend_df.columns:
        trend_df[trend_group] = 'Unknown'
    fig_trend = px.line(
        trend_df,
        x='firstAppearanceDate',
        y='count',
        color=trend_group,
        title=f"Trends: Distribution of Banknotes Over Years (Grouped by {trend_group})",
        template='plotly_dark'
    )
    # Add smoothing lines using moving average (window=3)
    smooth_trends = []
    for grp in trend_df[trend_group].unique():
        sub = trend_df[trend_df[trend_group] == grp].sort_values('firstAppearanceDate')
        sub['smoothed'] = sub['count'].rolling(window=3, min_periods=1).mean()
        smooth_trends.append(go.Scatter(
            x=sub['firstAppearanceDate'],
            y=sub['smoothed'],
            mode='lines',
            name=f"{grp} (Smoothed)"
        ))
    for trace in smooth_trends:
        fig_trend.add_trace(trace)

    # 3. Geography Analysis
    # Filter by category if a specific one is selected (other than "all")
    geo_df = dff.copy()
    if geo_profession != "all":
        geo_df = geo_df[geo_df['profession_clean'] == geo_profession]
    geo_group = geo_df.groupby('country').size().reset_index(name='count')
    fig_geo = px.choropleth(
        geo_group,
        locations='country',
        locationmode='country names',
        color='count',
        hover_name='country',
        color_continuous_scale='Viridis',
        title=f"Distribution of Banknotes by Country ({'All Professions' if geo_profession == 'all' else geo_profession})",
        template='plotly_dark'
    )

    # 4. Correlation Analysis
    # a) Heatmap for numerical variables
    corr_vars = ['currentBillValue', 'firstAppearanceDate', 'deathDate', 'appearanceDeathDiff', 'lifeSpan']
    corr_df = dff[corr_vars].corr()
    fig_corr = px.imshow(
        corr_df,
        text_auto=True,
        title='Correlation between Numerical Variables',
        template='plotly_dark'
    )

    # b) Cross-tab frequency heatmap for categorical data (gender vs. profession)
    cross_tab = pd.crosstab(dff['gender'], dff['profession_clean'])
    fig_cross = px.imshow(
        cross_tab,
        text_auto=True,
        title='Cross-Tab Frequency: Gender vs. Profession',
        template='plotly_dark'
    )

    # c) Perform chi-squared test for categorical data (gender vs. profession)
    try:
        chi2, p, dof, ex = chi2_contingency(cross_tab)
        chi2_text = f"χ² test (Gender vs. Profession): χ² = {chi2:.2f}, p-value = {p:.4f}"
    except Exception as e:
        chi2_text = f"Error performing χ² test: {e}"

    # 5. Machine Learning
    # Train a RandomForest classifier to predict 'isPioneer' and display feature importance
    ml_df = dff.copy()
    ml_df = ml_df[(ml_df['gender'] != 'Unknown') & (ml_df['profession_clean'] != 'Unknown') & (ml_df['country'] != 'Unknown')]
    if ml_df.shape[0] > 10:
        features = ml_df[['gender', 'profession_clean', 'country', 'currentBillValue', 'firstAppearanceDate']]
        target = ml_df['isPioneer']
        features_encoded = pd.get_dummies(features, drop_first=True)
        X_train, X_test, y_train, y_test = train_test_split(features_encoded, target, test_size=0.3, random_state=42)
        rf = RandomForestClassifier(n_estimators=100, random_state=42)
        rf.fit(X_train, y_train)
        importances = rf.feature_importances_
        imp_df = pd.DataFrame({'feature': features_encoded.columns, 'importance': importances})
        imp_df = imp_df.sort_values('importance', ascending=False)
        fig_ml = px.bar(
            imp_df,
            x='importance',
            y='feature',
            orientation='h',
            title='Feature Importance (RandomForest)',
            template='plotly_dark'
        )
        # Compute additional metrics
        y_pred = rf.predict(X_test)
        accuracy = accuracy_score(y_test, y_pred)
        f1 = f1_score(y_test, y_pred)
        precision = precision_score(y_test, y_pred)
        recall = recall_score(y_test, y_pred)
        ml_metrics_text = (f"Accuracy: {accuracy:.2f} | F1-score: {f1:.2f} | "
                           f"Precision: {precision:.2f} | Recall: {recall:.2f}")
    else:
        fig_ml = go.Figure()
        fig_ml.update_layout(title='Insufficient data for ML', template='plotly_dark')
        ml_metrics_text = 'No ML results available'

    # 6. Network Visualization
    # Use kamada_kawai_layout for improved performance and filter nodes by selected country
    net_df = dff.copy()
    if network_country != 'all':
        net_df = net_df[net_df['country'] == network_country]
    G = nx.Graph()
    for idx, row in net_df.iterrows():
        G.add_node(
            row['id'],
            label=row['name'],
            country=row['country'],
            profession=row['profession_clean'],
            gender=row['gender']
        )
    nodes = list(G.nodes(data=True))
    for i in range(len(nodes)):
        for j in range(i+1, len(nodes)):
            if (nodes[i][1]['country'] == nodes[j][1]['country']) or (nodes[i][1]['profession'] == nodes[j][1]['profession']):
                G.add_edge(nodes[i][0], nodes[j][0])
    pos = nx.kamada_kawai_layout(G)
    node_x, node_y, node_text, node_color = [], [], [], []
    for node, attr in G.nodes(data=True):
        x, y = pos[node]
        node_x.append(x)
        node_y.append(y)
        node_text.append(f"{attr['label']}\n{attr['profession']}\n{attr['country']}")
        node_color.append('cyan' if attr['gender'].lower() == 'female' else 'magenta')
    edge_x, edge_y = [], []
    for edge in G.edges():
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        edge_x.extend([x0, x1, None])
        edge_y.extend([y0, y1, None])
    edge_trace = go.Scatter(
        x=edge_x,
        y=edge_y,
        line=dict(width=0.5, color='#888'),
        hoverinfo='none',
        mode='lines'
    )
    node_trace = go.Scatter(
        x=node_x,
        y=node_y,
        mode='markers',
        marker=dict(size=10, color=node_color),
        text=node_text,
        hoverinfo='text'
    )
    fig_network = go.Figure(data=[edge_trace, node_trace])
    fig_network.update_layout(
        title='Network of Banknote Figures',
        template='plotly_dark',
        xaxis={'visible': False},
        yaxis={'visible': False}
    )

    # 7. Forecasting
    # Use ARIMA from statsmodels to forecast the count of banknotes over the years
    min_year = dff['firstAppearanceDate'].min()
    max_year = dff['firstAppearanceDate'].max()
    complete_years = pd.DataFrame({'firstAppearanceDate': range(min_year, max_year + 1)})
    ts_df = dff.groupby('firstAppearanceDate').size().reset_index(name='count')
    ts_df = complete_years.merge(ts_df, on='firstAppearanceDate', how='left').fillna({'count':0})
    ts_df['firstAppearanceDate'] = pd.to_datetime(ts_df['firstAppearanceDate'], format='%Y')
    ts_df.set_index('firstAppearanceDate', inplace=True)

    if len(ts_df) > 5:
        # Function to find the best ARIMA order based on AIC
        def find_best_arima_order(ts_data, p_values, d_values, q_values):
            best_aic = float('inf')
            best_order = None
            for p in p_values:
                for d in d_values:
                    for q in q_values:
                        try:
                            model = ARIMA(ts_data, order=(p,d,q))
                            results = model.fit()
                            aic = results.aic
                            if aic < best_aic:
                                best_aic = aic
                                best_order = (p,d,q)
                        except:
                            continue
            return best_order

        # Define possible values for p, d, q
        p_values = range(0, 3)
        d_values = range(0, 2)
        q_values = range(0, 3)

        # Find the best ARIMA order
        best_order = find_best_arima_order(ts_df['count'], p_values, d_values, q_values)

        # Fit ARIMA model with the best order
        try:
            model = ARIMA(ts_df['count'], order=best_order)
            model_fit = model.fit()

            # Generate forecast
            forecast_steps = 5
            forecast_values = model_fit.forecast(steps=forecast_steps)

            # Generate future dates
            last_date = ts_df.index.max()
            future_dates = pd.date_range(start=last_date + pd.DateOffset(years=1), periods=forecast_steps, freq='Y')

            # Create the forecast figure
            fig_forecast = go.Figure()
            fig_forecast.add_trace(
                go.Scatter(
                    x=ts_df.index,
                    y=ts_df['count'],
                    mode='lines+markers',
                    name='Historical Data'
                )
            )
            fig_forecast.add_trace(
                go.Scatter(
                    x=future_dates,
                    y=forecast_values,
                    mode='lines',
                    name='Forecast'
                )
            )
            fig_forecast.update_layout(
                title=f'Forecast of Banknote Counts by Year (ARIMA {best_order})',
                template='plotly_dark'
            )
        except Exception as e:
            fig_forecast = go.Figure()
            fig_forecast.update_layout(
                title=f'Error in forecasting: {str(e)}',
                template='plotly_dark'
            )
    else:
        fig_forecast = go.Figure()
        fig_forecast.update_layout(
            title='Insufficient data for forecasting',
            template='plotly_dark'
        )

    # Return all updated figures and data
    return (fig_bar, fig_scatter, fig_grouped, fig_box, table_data, fig_trend, fig_geo,
            fig_corr, fig_cross, chi2_text, fig_ml, ml_metrics_text, fig_network, fig_forecast)

# Run the app
if __name__ == '__main__':
    app.run_server(debug=True)