import pandas as pd
import solara
import matplotlib.pyplot as plt
import numpy as np
import folium
from folium.plugins import TimestampedGeoJson
# Load the CSV files
file_path = 'solara-dropdown.csv'
id_file_path = 'test_longtable_line.csv'
data = pd.read_csv(file_path)
id_data = pd.read_csv(id_file_path)
# Extract unique states and IDs
unique_states = data['state'].unique().tolist()
unique_ids = id_data['Id'].unique().tolist()
# Merge the dataframes to ensure we have both IDs and other relevant data
merged_data = pd.merge(data, id_data, on='Id', how='inner')
# Reactive variables
selected_id = solara.reactive(unique_ids[0])
selected_state = solara.reactive("")
selected_name = solara.reactive("")
generate_trigger = solara.reactive(0)
# Function to update state and name based on selected ID
def update_state_and_name(id):
filtered_data = merged_data[merged_data['Id'] == id]
if not filtered_data.empty:
selected_state.value = filtered_data['state'].iloc[0]
selected_name.value = filtered_data['Name_x'].iloc[0]
else:
selected_state.value = ""
selected_name.value = ""
# Function to filter data based on selected state and ID
def get_filtered_names(state, id):
filtered_names = merged_data[(merged_data['state'] == state) & (merged_data['Id'] == id)]['Name_x'].unique().tolist()
if filtered_names:
selected_name.value = filtered_names[0]
return filtered_names
# Function to plot bar chart using matplotlib
def plot_bar_chart(df, name):
filtered_data = df[df['Name_x'] == name].drop_duplicates(subset=['XCoordinate_x', 'YCoordinate_x'])
if filtered_data.empty:
print("No data available for the selected filters.")
return None
fig, ax = plt.subplots(figsize=(10, 6))
width = 0.3 # Bar width
x = np.arange(len(filtered_data)) # the label locations
ax.bar(x - width/2, filtered_data['XCoordinate_x'], width, label='XCoordinate', color='blue')
ax.bar(x + width/2, filtered_data['YCoordinate_x'], width, label='YCoordinate', color='orange', alpha=0.7)
ax.set_xticks(x)
ax.set_xticklabels(filtered_data['Name_x'], rotation=45, ha='right')
ax.set_xlabel('Name', fontweight='bold')
ax.set_ylabel('Coordinate Value', fontweight='bold')
ax.set_title(f'Bar Chart for {name}', fontweight='bold')
ax.legend(loc='upper right')
# Add data labels
for i in range(len(filtered_data)):
ax.text(i - width/2, filtered_data['XCoordinate_x'].iloc[i] / 2, str(filtered_data['XCoordinate_x'].iloc[i]), ha='center', va='bottom', color='white')
ax.text(i + width/2, filtered_data['YCoordinate_x'].iloc[i] / 2, str(filtered_data['YCoordinate_x'].iloc[i]), ha='center', va='bottom', color='black')
fig.tight_layout() # Adjust layout to make room for rotated x-tick labels
return fig
# Function to add legends to the map
def add_legend(m):
legend_html = '''
<div style="position: fixed;
bottom: 50px; right: 50px; width: 150px; height: 150px;
border:2px solid grey; z-index:9999; font-size:14px;
background-color:white;
">
<b>Legend</b><br>
<i class="fa fa-circle" style="color:green"></i> value < 10<br>
<i class="fa fa-circle" style="color:blue"></i> 10 <= value < 20<br>
<i class="fa fa-circle" style="color:orange"></i> 20 <= value < 30<br>
<i class="fa fa-circle" style="color:red"></i> value >= 30
</div>
'''
m.get_root().html.add_child(folium.Element(legend_html))
# Function to plot map with timeline slider
def plot_map_with_slider(df, highlight_id=None):
# Create a map centered around the mean coordinates with a specific zoom level
m = folium.Map(location=[0, 20], zoom_start=4)
# Define a function to determine color based on value
def get_color(value):
if value < 10:
return 'green'
elif 10 <= value < 20:
return 'blue'
elif 20 <= value < 30:
return 'orange'
else:
return 'red'
features = []
for i, row in df.iterrows():
feature = {
'type': 'Feature',
'geometry': {
'type': 'Point',
'coordinates': [row['XCoordinate_x'], row['YCoordinate_x']]
},
'properties': {
'time': row['date'],
'popup': f"ID: {row['Id']} - {row['Name_x']}: ({row['XCoordinate_x']}, {row['YCoordinate_x']}) Value: {row['value']}",
'icon': 'circle',
'iconstyle': {
'color': get_color(row['value']),
'fillColor': get_color(row['value']),
'fillOpacity': 0.6,
'radius': 10
}
}
}
if highlight_id and row['Id'] == highlight_id:
# Adding blinking effect for the highlighted ID
feature['properties']['iconstyle']['className'] = 'blinking'
features.append(feature)
TimestampedGeoJson({
'type': 'FeatureCollection',
'features': features
}, period='P1D', add_last_point=True, auto_play=False, loop=False).add_to(m)
# Add legend to the map
add_legend(m)
# Add CSS for blinking effect
blinking_css = '''
<style>
.blinking {
animation: blinker 1s linear infinite;
}
@keyframes blinker {
50% { opacity: 0; }
}
</style>
'''
m.get_root().html.add_child(folium.Element(blinking_css))
return m
# Components
@solara.component
def View():
with solara.VBox() as main:
if generate_trigger.value > 0 and selected_id.value:
m = plot_map_with_slider(merged_data, highlight_id=selected_id.value)
fig = plot_bar_chart(merged_data, selected_name.value)
if fig:
solara.HTML(tag="div", unsafe_innerHTML=m._repr_html_())
solara.FigureMatplotlib(fig)
solara.Info("Map and chart have been updated.")
else:
solara.Warning("No data available for the selected state and name.")
else:
m = plot_map_with_slider(merged_data)
solara.HTML(tag="div", unsafe_innerHTML=m._repr_html_())
solara.Warning("Please select a state and a name.")
return main
@solara.component
def Controls():
# Update the options for the Name dropdown based on the selected state and ID
update_state_and_name(selected_id.value)
filtered_names = get_filtered_names(selected_state.value, selected_id.value)
solara.Select('ID', values=unique_ids, value=selected_id)
solara.Select('State', values=unique_states, value=selected_state)
solara.Select('Name', values=filtered_names, value=selected_name)
def generate_chart():
generate_trigger.value += 1
solara.Button(label="Generate Chart", on_click=generate_chart, icon_name="mdi-chart-bar")
@solara.component
def Page():
with solara.Sidebar():
Controls()
View()
# Display the page
Page()