Py.Cafe

acabrera.citizens/

nyc-marathon-results-analysis

NYC Marathon Results Analysis

DocsPricing
  • app.py
  • ny_marathon_2024_db.py
  • requirements.txt
ny_marathon_2024_db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import pandas as pd
import numpy as np
import plotly.express as px
import dash
import dash_bootstrap_components as dbc
from dash import Input, Output, dcc, html

df = pd.read_csv("NYC Marathon Results, 2024 - Marathon Runner Results.csv")

def convert_time_to_minutes(time_str):
    parts = time_str.split(':')
    if len(parts) == 3:  # Formato HH:MM:SS
        hours, minutes, seconds = map(int, parts)
        total_minutes = hours * 60 + minutes + seconds / 60
    elif len(parts) == 2:  # Formato MM:SS
        minutes, seconds = map(int, parts)
        total_minutes = minutes + seconds / 60
    else:
        raise ValueError("Formato de tiempo no reconocido")
    
    return total_minutes

# Crear una función para categorizar por edad
def categorize_age(age):
    if 18 <= age <= 19:
        return '18-19'
    elif 20 <= age <= 24:
        return '20-24'
    elif 25 <= age <= 29:
        return '25-29'
    elif 30 <= age <= 34:
        return '30-34'
    elif 35 <= age <= 39:
        return '35-39'
    elif 40 <= age <= 44:
        return '40-44'
    elif 45 <= age <= 49:
        return '45-49'
    elif 50 <= age <= 54:
        return '50-54'
    elif 55 <= age <= 59:
        return '55-59'
    elif 60 <= age <= 64:
        return '60-64'
    elif 65 <= age <= 70:
        return '65-70'
    else:
        return '71+'

df['pace_minutes'] = (df['pace'].apply(convert_time_to_minutes).round(2))
df['overallTime_minutes'] = df['overallTime'].apply(convert_time_to_minutes).round(2)
df['ageGradeTime_minutes'] = df['ageGradeTime'].apply(convert_time_to_minutes).round(2)
df['ageCategory'] = df['age'].apply(categorize_age)

brasil_df = df.query("iaaf == 'BRA'")

gender_dict = {"M":"Men", "W":"Woman"}

brasil_df.loc[:, 'gender'] = brasil_df.gender.map(gender_dict)

def categorize_country(country_code):
    
    if country_code in ['BRA', 'USA']:
        return country_code
    else:
        return "Other Country"

# Assuming brasil_df is your pandas DataFrame
brasil_df.loc[:,'country_living'] = brasil_df['countryCode'].apply(categorize_country)

def brasil_pie_chart():
    brasil_pie = brasil_df.country_living.value_counts()
    fig = px.pie(brasil_pie, values=brasil_pie.values, names=brasil_pie.index,hole=0.65,
                 color_discrete_sequence=px.colors.sequential.Viridis_r,
                 template='plotly_white')
    fig.update_layout(legend=dict(title=None, orientation="h", y=1.1, yanchor="bottom", x=0.1, xanchor="center", font=dict(size=16)),
                     paper_bgcolor='rgb(252, 248, 202)', plot_bgcolor='rgb(252, 248, 202)')
   
    return fig



def brasil_runners_bar():
    
    category_orders = {'ageCategory':['20-24', '25-29', '30-34', '35-39','40-44', '45-49', '50-54', '55-59', '60-64', '65-70', '71+']}
    data = brasil_df.groupby(['ageCategory', 'gender'], as_index=False).agg({'runnerId':'count'})
    fig = px.bar(data, x='ageCategory', y='runnerId', color='gender', 
                 category_orders=category_orders, barmode='relative',
                 color_discrete_sequence=px.colors.qualitative.Vivid,
                 labels={'ageCategory':''},
                 opacity=0.70,
                 template='plotly_white',text_auto=True,range_y=[0,230])
    
    fig.update_layout(legend=dict( title=None, orientation="h", y=1.03, yanchor="bottom", x=0.2, xanchor="center", font=dict(size=18)),
                      xaxis=dict(showline=True, linewidth=2.5, linecolor='lightgray',zeroline=True, zerolinewidth=2, zerolinecolor='red',
                                 tickfont=dict(size=18)),
                     paper_bgcolor='rgb(252, 248, 202)', plot_bgcolor='rgb(252, 248, 202)')
    
    fig.update_traces(textfont_size=14, textangle=0, textposition="outside", cliponaxis=False)
    fig.update_yaxes(visible=False)
    return fig

def pace_minutes_chart():
    category_orders = {'ageCategory':['20-24', '25-29', '30-34', '35-39','40-44', '45-49', '50-54', '55-59', '60-64', '65-70', '71+']}
    data1 = brasil_df.groupby(['ageCategory', 'gender'], as_index=False).agg({'pace_minutes':'mean'}).round(2)
    fig = px.line(data1, x='ageCategory', y='pace_minutes',color='gender', category_orders=category_orders,markers=True,#text_auto=True, barmode='relative',
                 color_discrete_sequence=px.colors.qualitative.Vivid,
                 labels={'ageCategory':'Age Range'},
                 template='plotly_white', text='pace_minutes',
                 symbol='gender', symbol_map={'Men': 'circle', 'Women': 'diamond'}
                 )
    
    fig.update_layout(legend=dict( title=None, orientation="h", y=0.95, yanchor="bottom", x=0.1, xanchor="center", font=dict(size=18)),
                      xaxis=dict(showline=True, linewidth=2.5, linecolor='lightgray',zeroline=True, zerolinewidth=2, zerolinecolor='red',
                                 title_font=dict(size=20), tickfont=dict(size=18)),
                      paper_bgcolor='rgb(252, 248, 202)', plot_bgcolor='rgb(252, 248, 202)'
                     )
    fig.update_traces(textfont_size=16, 
                      # textangle=0, 
                      textposition="top left", cliponaxis=False, marker=dict(size=15))
    fig.update_yaxes(visible=False)
    
   
    
    return fig
    
def overall_time_chart():

    category_orders = {'ageCategory':['20-24', '25-29', '30-34', '35-39','40-44', '45-49', '50-54', '55-59', '60-64', '65-70', '71+']}
    data1 = brasil_df.groupby(['ageCategory', 'gender'], as_index=False).agg({'overallTime_minutes':'mean'}).round(2)
    fig = px.line(data1, x='ageCategory', y='overallTime_minutes',color='gender', category_orders=category_orders,markers=True,#text_auto=True, barmode='relative',
                  color_discrete_sequence=px.colors.qualitative.Vivid,
                  template='plotly_white',labels={'ageCategory':'Age Range'}, text='overallTime_minutes',
                  symbol='gender', symbol_map={'Men': 'circle', 'Women': 'diamond'}
                )
    fig.update_layout(legend=dict( title=None, orientation="h", y=0.95, yanchor="bottom", x=0.1, xanchor="center", font=dict(size=18)),
                      xaxis=dict(showline=True, linewidth=2.5, linecolor='lightgray',zeroline=True, zerolinewidth=2, zerolinecolor='red',
                                title_font=dict(size=20), tickfont=dict(size=18)),
                      paper_bgcolor='rgb(252, 248, 202)', plot_bgcolor='rgb(252, 248, 202)'
                      )
    fig.update_traces(textfont_size=16, 
                      # textangle=0, 
                      textposition="top left", cliponaxis=False, marker=dict(size=15))
    
    fig.update_yaxes(visible=False)

    
    return fig



app = dash.Dash(external_stylesheets=[dbc.themes.SANDSTONE])

app.title = "New York Marathon 2024"




app.layout = dbc.Container(
    [
        html.H2("The Brazilian Runners Performance at the NYC Marathon 2024",
            style={'textAlign': 'center', 'padding': '10px', 'margin': '10px','font-weight': 'bold'}),
        html.H3("Exploring Age, Pace, and Origin",
            style={'textAlign': 'center', 'padding': '10px', 'margin': '10px'}),
        html.Hr(),
        dbc.Row([
            dbc.Col(
                [
                    html.H5("A significant portion (nearly 20%) of Brazilian runners in the NY Marathon are based abroad",
                            style={'textAlign': 'center', 'padding': '5px', 'margin': '5px'}),
                    dcc.Graph(id='brasil-pie', figure=brasil_pie_chart())
                ], width=5),
            dbc.Col(
                [
                    html.H5("Age Distribution of 827 Brazilian who competed in this Edition",
                            style={'textAlign': 'center', 'padding': '5px', 'margin': '5px'}),
                    dcc.Graph(id='runners-bar', figure=brasil_runners_bar())
                ], width=7)
        ]),
        dbc.Tabs([
            dbc.Tab(label="Pace Minutes per Mile by Age Range",
                children=[
                    html.H5("How Fast They Ran: Average Pace in Minutes per Mile",
                            style={'textAlign': 'center', 'padding': '5px', 'margin': '5px'}),
                    html.H6("Men Winner Pace Time = 4.88,  Women Winner Pace Time = 5.52 ",
                            style={'textAlign': 'center', 'padding': '5px', 'margin': '5px','font-style': 'italic'}),
                    dbc.Col(
                        dbc.Card(dcc.Graph(id='pace_minutes-bar', figure=pace_minutes_chart())
                    ) 
                    )
                ]),
            dbc.Tab(label="Overall Time Minutes per Mile by Age Range",
                children=[
                    html.H5("Average Time to Complete the Marathon for Brazilian Athletes (Minutes)",
                            style={'textAlign': 'center', 'padding': '0px', 'margin': '5px'}),
                    html.H6("Men Winner Time = 127.65,  Women Winner Pace Time = 144.58 ",
                            style={'textAlign': 'center', 'padding': '5px', 'margin': '5px','font-style': 'italic'}),
                    dbc.Col(
                        dbc.Card(dcc.Graph(id='overall_minutes-bar', figure=overall_time_chart()), 
                                 
                                )
                    )
                ]
            )
        ])
    ],# fluid=True,
    style={"backgroundColor": '#fcf8ca'}
)

if __name__ == "__main__":
    app.run_server(debug=True)