Py.Cafe

acabrera.citizens/

us_hurricanes

DocsPricing
  • app.py
  • hurricane_ds.py
  • requirements.txt
  • us-hurricanes.csv
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from dash import Dash, dcc, html, Input, Output, callback, State
import dash_bootstrap_components as dbc

df = pd.read_csv("us-hurricanes.csv").rename(columns={"states-affected-and-category-by-states":"states_affected"}).dropna()
df['category'] = df['category'].replace('TS', pd.NA)
df['states_affected'] = df.states_affected.str.split(",", expand=True)[0]

def clean_state(state):
    state = state.replace('* ', '').replace('# ', '').replace('& ', '').replace('&', '').replace(' 1', '').replace(' - TS', '').upper()
    return state

df['states_affected'] = df['states_affected'].apply(clean_state)

# Coordenadas de los estados
state_coords = {
    'FL': [27.6648, -81.5158],
    'AL': [32.3182, -86.9023],
    'GA': [33.0406, -83.6431],
    'TX': [31.9686, -99.9018],
    'LA': [31.1695, -91.8678],
    'NY': [42.6648, -74.0158],
    'NC': [35.7596, -79.0193],
    'RI': [41.7001, -71.4221],
    'ME': [45.2538, -69.4455],
    'SC': [33.8361, -81.1637],
    'MA': [42.4072, -71.3824]
}

# Inicialización de la aplicación Dash
app = Dash(__name__, external_stylesheets=[dbc.themes.LUMEN])

app.title="Hurricane Dashboard"

# Layout de la aplicación
app.layout = dbc.Container([
    dbc.Row([
        dbc.Col([
            html.H1("US-Hurricane Dashboard", className="text-center bg-primary text-white p-3 mb-4"),
            html.P("Hurricane Data Visualization", className="text-center mb-4")
        ])
    ]),
    dbc.Row([
        dbc.Col([
            dbc.Card([
                dbc.CardHeader("Filters"),
                dbc.CardBody([
                    dbc.Row([
                        dbc.Col([
                            html.Label("Years Range:"),
                            dcc.RangeSlider(
                                id='year-range-slider',
                                min=df['year'].min(),
                                max=df['year'].max(),
                                value=[df['year'].min(), df['year'].max()],
                                marks={i: str(i) for i in range(df['year'].min(), df['year'].max() + 1, 10)},
                                step=5
                            )
                        ], width=6),
                        dbc.Col([
                            html.Label("State:"),
                            dcc.Dropdown(
                                id='state-dropdown',
                                options=[{'label': 'All States', 'value': 'all'}] +
                                        [{'label': state, 'value': state} for state in state_coords.keys()],
                                value='all',
                                clearable=False
                            )
                        ], width=6)
                    ])
                ])
            ], className="mb-4")
        ])
    ]),
    dbc.Row([
        dbc.Col([
            dbc.Card([
                dbc.CardHeader([
                    dbc.Row([
                        dbc.Col("Wind Speed vs. Pressure Polar Chart", width=9),
                        dbc.Col([
                            dbc.Button(
                                [html.I(className="fas fa-info-circle me-1"), "How to read this chart"],
                                id="polar-info-button",
                                color="info",
                                size="sm",
                                className="float-end"
                            ),
                        ], width=3),
                    ]),
                ]),
                dbc.CardBody([
                    dcc.Graph(id='polar-chart', style={'height': '500px'}),
                    dbc.Collapse(
                        dbc.Card(
                            dbc.CardBody([
                                html.H6("How to Interpret the Polar Chart:", className="card-title"),
                                html.Ul([
                                    html.Li([
                                        html.Strong("Angle (Theta): "), 
                                        "Represents the normalized wind speed. Higher angles indicate higher wind speeds relative to the minimum and maximum in the dataset."
                                    ]),
                                    html.Li([
                                        html.Strong("Distance from Center (Radius): "), 
                                        "Represents the inverted pressure value (1000 - pressure). The further from center, the lower the hurricane's pressure."
                                    ]),
                                    html.Li([
                                        html.Strong("Point Size: "), 
                                        "Increases with hurricane category - larger points indicate higher category hurricanes."
                                    ]),
                                    html.Li([
                                        html.Strong("Color: "), 
                                        "Different colors represent different hurricane categories, as shown in the legend."
                                    ]),
                                    html.Li([
                                        html.Strong("Interpretation: "), 
                                        "The most intense hurricanes (higher categories) typically appear larger, further from center (lower pressure), and at higher angles (higher wind speeds)."
                                    ])
                                ])
                            ]), 
                            className="mt-2 border-info"
                        ),
                        id="polar-info-collapse",
                        is_open=False,
                    )
                ])
            ])
        ], width=6),
        dbc.Col([
            dbc.Card([
                dbc.CardHeader("Geographic Distribution of Hurricanes"),
                dbc.CardBody([
                    dcc.Graph(id='map-chart', style={'height': '500px'})
                ])
            ])
        ], width=6)
    ]),
    dbc.Row([
        dbc.Col([
            dbc.Card([
                dbc.CardHeader("Hurricane Information"),
                dbc.CardBody([
                    html.Div(id='hurricane-details', className="p-3")
                ])
            ], className="mt-4")
        ])
    ]),
    dbc.Row([
        dbc.Col([
            dbc.Card([
                dbc.CardHeader("Predictive Analysis"),
                dbc.CardBody([
                    html.H5("Seasonal Hurricane Probability"),
                    html.P("Based on historical patterns of the selected filters"),
                    dcc.Graph(id='prediction-chart')
                ])
            ], className="mt-4")
        ])
    ]),
    
    # Añadimos FontAwesome para los iconos
    html.Link(
        rel="stylesheet",
        href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.3/css/all.min.css"
    )
], fluid=True)

# Callback para el botón de información
@app.callback(
    Output("polar-info-collapse", "is_open"),
    [Input("polar-info-button", "n_clicks")],
    [State("polar-info-collapse", "is_open")],
)
def toggle_collapse(n, is_open):
    if n:
        return not is_open
    return is_open

# Callback para actualizar los gráficos
@app.callback(
    [Output('polar-chart', 'figure'),
     Output('map-chart', 'figure'),
     Output('hurricane-details', 'children'),
     Output('prediction-chart', 'figure')],
    [Input('year-range-slider', 'value'),
     Input('state-dropdown', 'value')]
)
def update_charts(year_range, state):
    # Filtrar los datos
    filtered_df = df
    filtered_df = filtered_df[(filtered_df['year'] >= year_range[0]) & (filtered_df['year'] <= year_range[1])]
    if state != 'all':
        filtered_df = filtered_df[filtered_df['states_affected'].str.contains(state)]

    # Gráfico polar
    polar_fig = go.Figure()
    
    if not filtered_df.empty:
        for cat in sorted(filtered_df['category'].dropna().unique()):
            cat_df = filtered_df[filtered_df['category'] == cat]
            if not cat_df.empty:
                max_wind = cat_df['max-wind-(kt)'].max()
                min_wind = cat_df['max-wind-(kt)'].min()
                if max_wind > min_wind:
                    theta = ((cat_df['max-wind-(kt)'] - min_wind) / (max_wind - min_wind)) * 360
                else:
                    theta = cat_df['max-wind-(kt)'] * 0 + 180
                radius = 1000 - cat_df['central-pressure-(mb)']
                color_map = {str(c): px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)]
                            for i, c in enumerate(sorted(filtered_df['category'].dropna().unique()))}
                size_map = {str(c): (i + 1) * 5 for i, c in enumerate(sorted(filtered_df['category'].dropna().unique()))}
                polar_fig.add_trace(
                    go.Scatterpolar(r=radius, theta=theta, mode='markers', 
                                    marker=dict(size=size_map[cat], 
                                                color=color_map[cat], opacity=0.7), 
                                    name=f'Category {cat}', 
                                    text=cat_df['name'].fillna('Unnamed') + '<br>' + 'Year: ' + cat_df['year'].astype(str) + '<br>' + 'Pressure: ' + cat_df['central-pressure-(mb)'].astype(str) + ' mb<br>' + 'Wind: ' + cat_df['max-wind-(kt)'].astype(str) + ' kt', hoverinfo='text'))
    
    polar_fig.update_layout(
        polar=dict(radialaxis=dict(visible=True, range=[0, 100]),
                   angularaxis=dict(direction='clockwise')),
        title={
            'text': 'Hurricane Intensity Chart',
            'y': 0.95,
            'x': 0.5,
            'xanchor': 'center',
            'yanchor': 'top'
        },
        annotations=[
            dict(
                text="Click the info button above for help interpreting this chart",
                showarrow=False,
                xref="paper", yref="paper",
                x=0.5, y=-0.1,
                font=dict(size=10, color="gray")
            )
        ],
        showlegend=True
    )

    # Gráfico del mapa
    map_fig = go.Figure()
    
    if not filtered_df.empty:
        lats = []
        lons = []
        for state_str in filtered_df['states_affected']:
            primary_state = state_str.split(',')[0]
            if primary_state in state_coords:
                lats.append(state_coords[primary_state][0])
                lons.append(state_coords[primary_state][1])
            else:
                lats.append(30.0)
                lons.append(-85.0)
                print(f"Warning: State '{primary_state}' not found in state_coords. Usando coordenadas predeterminadas.")

        if len(lats) == len(filtered_df) and len(lons) == len(filtered_df):
            map_df = filtered_df.copy()
            map_df['lat'] = lats
            map_df['lon'] = lons

            map_fig = px.scatter_mapbox(map_df, lat='lat', lon='lon', color='category', 
                                        size='max-wind-(kt)', size_max=20, zoom=3, 
                                        center=dict(lat=30, lon=-85), 
                                        hover_name='name', hover_data=['year', 'month', 'central-pressure-(mb)', 'max-wind-(kt)'],
                                        category_orders={'category':['1', '2', '3', '4', '5']},
                                        color_discrete_map={str(c): px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)] 
                                                            for i, c in enumerate(sorted(filtered_df['category'].dropna().unique()))}, 
                                       )
            
            map_fig.update_layout(mapbox_style="open-street-map", margin={"r": 0, "t": 30, "l": 0, "b": 0})
        else:
            print("Error: Length mismatch between filtered_df and coordinate lists.")
            map_fig.update_layout(mapbox_style="open-street-map",
                                  mapbox=dict(center=dict(lat=30, lon=-85), zoom=3),
                                  margin={"r": 0, "t": 30, "l": 0, "b": 0}, 
                                  title='Geographic Distribution of Hurricanes')
    else:
        map_fig.update_layout(mapbox_style="open-street-map", 
                              mapbox=dict(center=dict(lat=30, lon=-85), zoom=3), 
                              margin={"r": 0, "t": 30, "l": 0, "b": 0})

    # Detalles del huracán
    if not filtered_df.empty:
        total_hurricanes = len(filtered_df)
        avg_wind = filtered_df['max-wind-(kt)'].mean()
        avg_pressure = filtered_df['central-pressure-(mb)'].mean()
        category_counts = filtered_df['category'].value_counts().to_dict()

        details = [
            dbc.Row([
                dbc.Col([html.Div([html.H5("Total of Hurricanes"), html.P(f"{total_hurricanes}", className="fs-2 fw-bold text-primary")],
                                  className="border rounded p-3 text-center")]),
                dbc.Col([html.Div([html.H5("Average Wind Speed"), html.P(f"{avg_wind:.1f} kt", className="fs-2 fw-bold text-primary")],
                                  className="border rounded p-3 text-center")]),
                dbc.Col([html.Div([html.H5("Average Central Pressure"), 
                                   html.P(f"{avg_pressure:.1f} mb",
                                          className="fs-2 fw-bold text-primary")],
                                  className="border rounded p-3 text-center")]),
                dbc.Col([html.Div([html.H5("Category Distribution"),
                                   html.P([html.Span(f"Cat {cat}: {count}",
                                                     className=f"badge {'bg-warning' if cat == '3' else 'bg-danger' if cat == '4' else 'bg-dark'} me-2") for cat, count in category_counts.items()])], className="border rounded p-3 text-center")])
            ])
        ]
    else:
        details = [html.P("No hurricanes match the selected filters", className="text-center fs-4 text-muted")]

    # Gráfico de predicción
    prediction_fig = go.Figure()
    if not filtered_df.empty:
        month_counts = filtered_df['month'].value_counts()
        ordered_months = ['Jan', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
        month_data = [month_counts.get(m, 0) for m in ordered_months]

        prediction_fig.add_trace(go.Bar(x=ordered_months, y=month_data, marker_color='royalblue'))
        prediction_fig.add_trace(go.Scatter(x=ordered_months, y=month_data, mode='lines', line=dict(color='firebrick', dash='dot'), name='Trend'))
        prediction_fig.update_layout(title='Historical Hurricane Frequency by Month', xaxis_title='Month', yaxis_title='Númber of Hurricanes', showlegend=False)
    else:
        prediction_fig.add_annotation(x=0.5, y=0.5, text="No data available for prediction based on current filters", showarrow=False, font=dict(size=16))

    return polar_fig, map_fig, details, prediction_fig