import solara as sl
from mistralai.client import MistralClient
try:
import pycafe
reason = """You need a Mistral AI API key to run this example.
Get your [Mistral API key here](https://console.mistral.ai/api-keys/)
"""
mistral_api_key = pycafe.get_secret("MISTRAL_API_KEY", reason)
except ModuleNotFoundError:
# not on pycafe
import os
mistral_api_key = os.environ["MISTRAL_API_KEY"]
client = MistralClient(api_key=mistral_api_key)
from typing import List
from typing_extensions import TypedDict
class MessageDict(TypedDict):
role: str
content: str
messages: sl.Reactive[List[MessageDict]] = sl.reactive([])
def response_generator(messages):
response = client.chat_stream(model = "open-mistral-7b", messages = messages, max_tokens = 1024)
for chunk in response:
yield chunk.choices[0].delta.content
def add_chunk_to_ai_message(chunk: str):
messages.value = [
*messages.value[:-1],
{
"role": "assistant",
"content": messages.value[-1]["content"] + chunk,
},
]
@sl.component
def Page():
user_message_count = len([m for m in messages.value if m["role"] == "user"])
def send(user_message):
messages.value = [*messages.value, {"role": "user", "content": user_message}]
def response(messages):
messages.value = [*messages.value, {"role": "assistant", "content": ""}]
for chunk in response_generator(messages.value[:-1]):
add_chunk_to_ai_message(chunk)
async def result():
if messages.value != []:
response(messages)
result = sl.lab.use_task(result, dependencies=[user_message_count])
with sl.Column(align="center"):
with sl.lab.ChatBox(style={"position": "fixed", "overflow-y": "scroll","scrollbar-width": "none", "-ms-overflow-style": "none", "top": "0", "bottom": "10rem", "width": "60%"}):
for item in messages.value:
with sl.lab.ChatMessage(
user=item["role"] == "user",
name="User" if item["role"] == "user" else "Assistant"
):
sl.Markdown(item["content"])
sl.lab.ChatInput(send_callback=send, style={"position": "fixed", "bottom": "3rem", "width": "70%"})