"""*Linked Brushing* is a very powerful technique. It's also often called
*Linked Selections* or *Crossfiltering*.
This example is inspired by the HoloViews [Linked Brushing Reference Guide]\
(http://holoviews.org/user_guide/Linked_Brushing.html) and the Plotly blog post
[Introducing Dash HoloViews]\
(https://medium.com/plotly/introducing-dash-holoviews-6a05c088ebe5).
This example uses the *Iris* dataset.
"""
from typing import Tuple
import holoviews as hv
import panel as pn
from holoviews import opts
from panel.template import FastListTemplate
import plotly.io as pio
import pandas as pd
@pn.cache
def get_iris_data():
return pd.read_csv("https://cdn.jsdelivr.net/gh/awesome-panel/awesome-panel@main/docs/resources/crossfiltering_holoviews/iris.csv.gz")
ACCENT = "#F08080"
CSS = """
.main .card-margin.stretch_both {
height: calc(100vh - 125px) !important;
}
"""
def _plotly_hooks(plot, element):
"""Used by HoloViews to give plots plotly plots special treatment"""
fig = plot.state
fig["layout"]["dragmode"] = "select"
fig["config"]["displayModeBar"] = True
if isinstance(element, hv.Histogram):
# Constrain histogram selection direction to horizontal
fig["layout"]["selectdirection"] = "h"
def get_linked_plots() -> Tuple:
"""Returns a tuple (scatter, hist) of linked plots
See http://holoviews.org/user_guide/Linked_Brushing.html
"""
dataset = hv.Dataset(get_iris_data())
scatter = hv.Scatter(dataset, kdims=["sepal_length"], vdims=["sepal_width"])
hist = hv.operation.histogram(dataset, dimension="petal_width", normed=False)
# pylint: disable=no-value-for-parameter
selection_linker = hv.selection.link_selections.instance()
# pylint: disable=no-member
scatter = selection_linker(scatter).opts(
opts.Scatter(color=ACCENT, size=10, hooks=[_plotly_hooks], width=700, height=400),
)
hist = selection_linker(hist).opts(
opts.Histogram(color=ACCENT, hooks=[_plotly_hooks], width=700, height=400)
)
return scatter, hist
def create_app():
"""Returns the app in a nice FastListTemplate"""
if pn.config.theme == "dark":
pio.templates.default = "plotly_dark"
else:
pio.templates.default = "plotly_white"
scatter, hist = get_linked_plots()
scatter_panel = pn.pane.HoloViews(scatter, sizing_mode="stretch_both", backend="plotly")
hist_panel = pn.pane.HoloViews(hist, sizing_mode="stretch_both", backend="plotly")
def reset(event):
scatter, hist = get_linked_plots()
scatter_panel.object=scatter
hist_panel.object=hist
reset_button = pn.widgets.Button(name="RESET PLOTS", on_click=reset, description="Resets the plots. Plotly does not have a built in way to do this.")
template = FastListTemplate(
site="Awesome Panel",
site_url="https://awesome-panel.org",
title="Crossfiltering with HoloViews and Plotly",
accent=ACCENT,
main=[
# We need to wrap in Columns to get them to stretch properly
pn.Column(reset_button, scatter_panel, pn.layout.Spacer(height=20), hist_panel, height=870, sizing_mode="stretch_width"),
],
main_max_width="850px",
)
return template
pn.extension("plotly", raw_css=[CSS])
hv.extension("plotly")
create_app().servable()