Py.Cafe

caiquecober/

yield-curve-spread-analysis

Yield Curve Spread Analysis

DocsPricing
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import pandas as pd
import numpy as np
import plotly.express as px
from fredapi import Fred
import streamlit as st

def fetch_yield_data(api_key, start_date, end_date):
    """
    Fetches bond yield data from the FRED API.

    Parameters:
        api_key (str): Your FRED API key.
        start_date (str): Start date for the data (YYYY-MM-DD).
        end_date (str): End date for the data (YYYY-MM-DD).

    Returns:
        pd.DataFrame: DataFrame containing various bond yields.
    """
    fred = Fred(api_key=api_key)
    data = {
        '3M': fred.get_series('DGS3MO', observation_start=start_date, observation_end=end_date),
        '1Y': fred.get_series('DGS1', observation_start=start_date, observation_end=end_date),
        '2Y': fred.get_series('DGS2', observation_start=start_date, observation_end=end_date),
        '5Y': fred.get_series('DGS5', observation_start=start_date, observation_end=end_date),
        '7Y': fred.get_series('DGS7', observation_start=start_date, observation_end=end_date),
        '10Y': fred.get_series('DGS10', observation_start=start_date, observation_end=end_date),
        '20Y': fred.get_series('DGS20', observation_start=start_date, observation_end=end_date),
        '30Y': fred.get_series('DGS30', observation_start=start_date, observation_end=end_date)
    }
    df = pd.DataFrame(data)
    df.index = pd.to_datetime(df.index)
    return df

def classify_spreads(df, front_leg, back_leg, lookback):
    """
    Calculates spreads and classifies yield regimes based on front/back legs and lookback.

    Parameters:
        df (pd.DataFrame): DataFrame containing bond yields.
        front_leg (str): Front leg maturity (e.g., '2Y').
        back_leg (str): Back leg maturity (e.g., '10Y').
        lookback (int): Lookback period for comparison.

    Returns:
        pd.DataFrame: DataFrame with spreads and regime classification.
    """
    front = df[front_leg]
    back = df[back_leg]
    curve = (back * 100) - (front * 100)

    df['Curve'] = curve
    df['Curve_Lookback'] = df['Curve'].shift(lookback)
    df['Front_Lookback'] = front.shift(lookback)
    df['Back_Lookback'] = back.shift(lookback)

    conditions = [
        (df['Curve'] > df['Curve_Lookback']) & (front < df['Front_Lookback']) & (back < df['Back_Lookback']),  # Bull Steepener
        (df['Curve'] > df['Curve_Lookback']) & (front > df['Front_Lookback']) & (back > df['Back_Lookback']),  # Bear Steepener
        (df['Curve'] > df['Curve_Lookback']) & (front < df['Front_Lookback']) & (back > df['Back_Lookback']),  # Steepener Twist
        (df['Curve'] < df['Curve_Lookback']) & (front < df['Front_Lookback']) & (back < df['Back_Lookback']),  # Bull Flattener
        (df['Curve'] < df['Curve_Lookback']) & (front > df['Front_Lookback']) & (back > df['Back_Lookback']),  # Bear Flattener
        (df['Curve'] < df['Curve_Lookback']) & (front > df['Front_Lookback']) & (back < df['Back_Lookback']),  # Flattener Twist
    ]

    labels = [
        'Bull Steepener', 'Bear Steepener', 'Steepener Twist',
        'Bull Flattener', 'Bear Flattener', 'Flattener Twist'
    ]

    df['Regime'] = np.select(conditions, labels, default='No Change')

    return df

def plot_spread(df):
    """
    Plots the curve spread with regime classification using Plotly.

    Parameters:
        df (pd.DataFrame): DataFrame containing spreads and regimes.

    Returns:
        None: Displays an interactive Plotly plot.
    """
    fig = px.scatter(
        df.reset_index(),
        x='index',
        y='Curve',
        color='Regime',
        color_discrete_map={
            'Bull Steepener': 'blue',
            'Bear Steepener': 'red',
            'Steepener Twist': 'purple',
            'Bull Flattener': 'green',
            'Bear Flattener': 'orange',
            'Flattener Twist': 'cyan',
            'No Change': 'black'
        },
        title=f'Yield Curve Spread with Regime Classification - {front_leg}-{back_leg}',
        labels={
            'index': 'Date',
            'Curve': 'Curve Spread (bps)',
            'Regime': 'Yield Curve State'
        }
    )
    fig.update_layout(
        legend_title="Regime",
        xaxis_title="Date",
        yaxis_title="Spread (bps)",
    )
    st.plotly_chart(fig)
    # Bar chart for regime counts
    regime_counts = df['Regime'].value_counts().reset_index()
    regime_counts.columns = ['Regime', 'Days']
    regime_counts = regime_counts.sort_values(by='Days', ascending=False)

    most_common_regime = regime_counts.iloc[0]['Regime']
    title = (f"Regime Counts from {start_date} to {end_date} (Lookback: {lookback}, Spread: {front_leg}-{back_leg})\n"
             f"Most Common Regime: {most_common_regime}")

    fig_bar = px.bar(
        regime_counts,
        x='Regime',
        y='Days',
        title=title,
        labels={
            'Regime': 'Yield Curve State',
            'Days': 'Number of Days'
        }
    )
    fig_bar.update_layout(
        xaxis_title="Regime",
        yaxis_title="Number of Days",
    )
    st.plotly_chart(fig_bar)
    

def plot_curve(df, days_ago):
    """
    Plots the full curve based on selected days-ago index.

    Parameters:
        df (pd.DataFrame): DataFrame containing bond yields.
        days_ago (list of int): Days ago indices to select curves.

    Returns:
        None: Displays an interactive Plotly plot.
    """
    selected_indices = [-int(day) for day in days_ago]
    selected_data = df.iloc[selected_indices]
    curve_data = selected_data.transpose()
    curve_data.columns = [f"{abs(idx)} days ago" for idx in selected_indices]
    curve_data.reset_index(inplace=True)
    curve_data.rename(columns={"index": "Term"}, inplace=True)

    fig = px.line(
        curve_data.melt(id_vars="Term", var_name="Observation", value_name="Yield"),
        x="Term", y="Yield", color="Observation",
        title="Yield Curve",
        labels={"Term": "Maturity", "Yield": "Yield (%)", "Observation": "Observation"}
    )
    fig.update_layout(
        legend_title="Observation",
        xaxis_title="Maturity",
        yaxis_title="Yield (%)",
    )
    st.plotly_chart(fig)
    

# Streamlit App
st.title("Yield Curve Spread Analysis")

tabs = st.tabs(["Regime Classification Tool", "Curve Builder"])

with tabs[0]:
    lst =['3M', '1Y', '2Y', '5Y', '7Y', '10Y', '20Y', '30Y']
    col1,col2,col3 = st.columns(3)
    api_key = col3.text_input("Enter your FRED API Key:")
    start_date = col1.date_input("Start Date:", value=pd.to_datetime("2024-01-01"))
    end_date = col2.date_input("End Date:", value=pd.to_datetime("2025-01-01"))
    front_leg = col1.selectbox("Select Front Leg:",lst,index=2)
    back_leg = col2.selectbox("Select Back Leg:", lst, index=3)
    lookback = st.slider("Select Lookback Period:", min_value=1, max_value=50, value=1)

    if api_key:
        st.write("Fetching yield data...")
        df_yields = fetch_yield_data(api_key, start_date.strftime("%Y-%m-%d"), end_date.strftime("%Y-%m-%d"))
        df_yields = df_yields.ffill()
        #st.write("Yield Data:", df_yields.head())

        st.write("Calculating spreads and classifying regimes...")
        df_classified = classify_spreads(df_yields, front_leg, back_leg, lookback)
        #st.write("Classified Data:", df_classified.head())

        plot_spread(df_classified)

with tabs[1]:
    st.header("Curve Builder")
    api_key = st.text_input("Enter your FRED API Key for Curve Builder:", key="curve_key")
    if api_key:
        st.write("Fetching yield data for curve...")
        df_yields = fetch_yield_data(api_key, start_date.strftime("%Y-%m-%d"), end_date.strftime("%Y-%m-%d"))
        st.write("Yield Data:", df_yields.head())

        days_ago_input = st.text_input("Enter days ago indices for the curve (e.g., '1,2,5'):")
        if days_ago_input:
            days_ago = days_ago_input.split(',')
            st.write("Building the yield curve...")
            plot_curve(df_yields, days_ago)