Py.Cafe

emilopez/

pyalfalfadynamics

Running Streamlit on Py.cafe

DocsPricing
  • app.py
  • cycles_all.dat
  • model.py
  • requirements.txt
  • yield.csv
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import streamlit as st
import numpy as np
import pandas as pd
import plotly.graph_objects as go

import model


alfalfa_data = pd.read_csv("cycles_all.dat", sep=";")
fisher_params = [2.35594909, 0.86735709]
landau_params = [3.05408611, 1.71316648]
gompertz_params = [2.2560388524572836, 3.5285080544747816]
print("\x1b[1;92mStreamlit script running...\x1b[0m")

st.title("Alfalfa dynamics")

st.markdown("""Alfalfa growth modeling using Fisher, Landau and Gompertz models""")


data = pd.DataFrame({
    "x":alfalfa_data.tau,
    "y_mean":alfalfa_data.mean_val,
    "y_fisher": model.fisher(alfalfa_data.tau, *fisher_params),
    "y_landau": model.landau(alfalfa_data.tau, *landau_params),
    "y_gompertz":model.gompertz(alfalfa_data.tau, *gompertz_params),
})

rrmse_gompertz = 0.04887656494425247
rrmse_landau = 0.026585082154547086
rrmse_fisher = 0.02496139654509409


st.subheader("Fitted models")
st.markdown(
"""
The alfalfa growth mean cycle was fitted with the following models:

- Fisher:   $f(x)=\\left [1 + \\beta_0 e^{-\\beta_1x} \\right ]^{-1}$
- Gompertz: $f(x) = e^{-\\beta_0 e^{-\\beta_1 x}}$
- Landau:   $f(x) =[0.5 + 0.5 \cdot \\tanh(\\beta_0 x -  \\beta_1)]^{1/2}$
""")

fig = go.Figure()
fig.add_trace(go.Scatter(x = data.x, y = data.y_mean, mode="markers", name="y_mean"))
fig.add_trace(go.Scatter(x = data.x, y = data.y_fisher, mode="lines", name=f"Fisher         | RMSE = {100*rrmse_fisher:.1f}"))
fig.add_trace(go.Scatter(x = data.x, y = data.y_landau, mode="lines", name=f"Landau      | RMSE = {100*rrmse_landau:.1f}"))
fig.add_trace(go.Scatter(x = data.x, y = data.y_gompertz, mode="lines", name=f"Gompertz | RMSE = {100*rrmse_gompertz:.1f}"))
fig.update_layout(template="ggplot2", legend=dict(x=0.05, y=0.96, orientation='v'))
fig.update_layout(font = dict(size=18, color='black'), xaxis_title="GDD*", yaxis_title="Height*")
fig.update_traces(line={'width': 3})

st.plotly_chart(fig, use_container_width=True)

st.subheader("Alfalfa normalized data")

st.markdown("""The raw data was smoothed and normalized, then the alfalfa growth cycles were averaged (12 cycles):""")

fig = go.Figure()
for una_curva in alfalfa_data.columns.values[1:13]:
    fig.add_trace(go.Scatter(x=alfalfa_data.tau, y=alfalfa_data[una_curva], name=una_curva, showlegend=False,
    marker=dict(color='lightgrey', opacity=1, size=10, line=dict(color='MediumPurple', width=1.5))))
fig.add_trace(go.Scatter(x = alfalfa_data.tau, y = alfalfa_data.mean_val, mode="markers+lines", name="curva promedio",line=dict(color='red', width=1.5)))
fig.update_layout(template="ggplot2", legend=dict(x=0.05, y=0.96, orientation='v'))
fig.update_layout(font = dict(size=20, color='black'),  xaxis_title="GDD*", yaxis_title="Height*")
fig.update_traces(line={'width': 3})

st.plotly_chart(fig, use_container_width=True)
st.dataframe(alfalfa_data) 

st.subheader("Fisher modelling")
fisher_coef = {"ciclo_a6":[1.575,0.626],
        "ciclo_a7":[1.755,0.722],
        "ciclo_a5":[3.206,1.551],
        "ciclo_a8":[1.849,0.838],
        "ciclo_a2":[2.611,0.840],
        "ciclo_b1":[2.569,0.820],
        "ciclo_b3":[2.648,1.028],
        "ciclo_b4":[3.735,1.549],
        "ciclo_b5":[1.875,0.490],
        "ciclo_b6":[2.616,0.826],
        "ciclo_b7":[2.864,0.834],
        "ciclo_b8":[3.326,1.183]}
opciones = alfalfa_data.columns[1:-2]

st.markdown("""Each alfalfa growth cycle was fitted using Fisher model:""")
# Crear la lista desplegable
cycle_op = st.radio('Growth cycle:', opciones, horizontal=True)

fig = go.Figure()
fig.add_trace(go.Scatter(x = alfalfa_data.tau, y = alfalfa_data[cycle_op], mode="markers", name="y_mean"))
fig.add_trace(go.Scatter(x = alfalfa_data.tau, y = model.fisher(alfalfa_data.tau, *fisher_coef[cycle_op]), mode="lines", name=f"Fisher"))
fig.update_layout(template="ggplot2", legend=dict(x=0.05, y=0.96, orientation='v'))
fig.update_layout(font = dict(size=18, color='black'))
fig.update_traces(line={'width': 3})

st.plotly_chart(fig, use_container_width=True)

st.subheader("Alfalfa yield")

st.markdown("""

Alfalfa DMY (Dry Matter Yield) was computed using multiple linear regression as:

$DMY= a_1\\;\\varphi_1(t) + a_2\\;\\varphi_2(t) + a_3\\;\\varphi_3(t)$

Where

- $DMY$ is Dry Matter Yield in Tn/Ha
- $\\varphi_1(t)$ is cumulative rainfall in mm
- $\\varphi_2(t)$ is final plant height in cm
- $\\varphi_3(t)$ is cumulative $GDD$ in $^{\circ}$C-day""")

alfa_yield = pd.read_csv("yield.csv", sep=",", comment="#")

scatters = go.Scatter3d(
    x = alfa_yield.GDD,
    y = alfa_yield.Rainfall,
    z = alfa_yield.Ha,
    mode='markers',
    showlegend=False,
    marker=dict(
        size = alfa_yield.DMY*10.5,
        line = dict(color = "black"),
        color=alfa_yield.DMY,                # set color to an array/list of desired values
        colorscale='Blugrn',              # choose a colorscale
        opacity=0.95, 
        colorbar=dict(title='DMY [Tn/Ha]', len = 0.5),
    )
)

fig = go.Figure(data = [scatters])

fig.update_layout(margin=dict(l=0, r=0, b=0, t=0), template="ggplot2", width=700, height=600)

fig.update_layout(
    scene=dict(
        xaxis_title='GDD [ºC * day]',
        yaxis_title='Rainfall [mm]',
        zaxis_title='Height [cm]'
    )
)

# Rango de ejes
fig.update_layout(
    scene=dict(
        xaxis=dict(range=[100, 700]), # rango eje X = GDD
        yaxis=dict(range=[-5, 300]),   # rango eje Y = Rainfall
        zaxis=dict(range=[5, 70]),    # rango eje Z = height
        aspectratio=dict(x=1.1, y=0.7, z=1)
    )
)

fig.update_layout(
    scene=dict(
        xaxis=dict(title=dict(font=dict(size=20))),
        yaxis=dict(title=dict(font=dict(size=20))),
        zaxis=dict(title=dict(font=dict(size=20))),
    )
)

st.plotly_chart(fig, use_container_width=True)

st.markdown(
    """
### Useful links:
            
* [Gitlab repository](https://gitlab.com/emilopez/pyalfalfadynamics)
* [PyCafe webapp](https://py.cafe/app/emilopez/pyalfalfadynamics)
* [Streamlit webapp](https://pyalfalfadynamics.streamlit.app/)
* [Gitlab static app](https://emilopez.gitlab.io/pyalfalfadynamics)
 * Author: [Emiliano López](https://gitlab.com/emilopez/)
"""
)