Py.Cafe

htrophy2020/

vizro-iris-dataset

Exploring Iris Dataset with Vizro

DocsPricing
  • app.py
  • app_test.py
  • requirements.txt
app_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

# OptionWaveEngine/src/OW_User_Interface/vizro_base_3.py

# import vizro
from vizro import Vizro
import vizro.plotly.express as px
import vizro.models as vm
from vizro.models.types import capture
from vizro.managers import data_manager

# import plotly
import plotly.graph_objects as go
from plotly.subplots import make_subplots

# import yfinance and pandas
import pandas as pd
import yfinance as yf

# import datetime
from datetime import datetime, timedelta

# import functions
import func_tfunc as tfunc
import app_utlities as utl




# Calculate default dates: 180 days ago and today
today = datetime.today().date()
x_days_ago = today - timedelta(days=180)
# Define the date range
start_date = x_days_ago
end_date = today




'''
def get_data_by_ticker(ticker="AAPL", timeframe="daily", st=start_date, ed=end_date):
    return utl.get_stock_data(ticker, timeframe, st, ed)


def calculate_candle_signals(data_frame):
    return utl.calculate_candlestick_patterns(data_frame)



# Load stock data - standard without candle signals
def load_stock_data(ticker="AAPL", timeframe="daily", st=start_date, ed=end_date):
    data = get_data_by_ticker(ticker=ticker, timeframe=timeframe, st=st, ed=ed)
    return data

data_manager["stock_data"] = load_stock_data
'''


def calculate_candlestick_patterns(df):
    
    import pandas as pd
    import talib
    
    """
    This function calculates all candlestick patterns available in the `TA-Lib` library
    and adds them as new columns to the DataFrame. The patterns are binary (1 if detected, 0 otherwise).
    All column names are standardized to begin with uppercase letters.

    Parameters:
    df (pd.DataFrame): DataFrame containing stock data with 'Open', 'High', 'Low', 'Close' columns.

    Returns:
    pd.DataFrame: DataFrame with added candlestick pattern signal columns.
    """
    
    # List of all candlestick patterns in TA-Lib
    patterns = {
        '2Crows': talib.CDL2CROWS,
        '3BlackCrows': talib.CDL3BLACKCROWS,
        '3Inside': talib.CDL3INSIDE,
        '3LineStrike': talib.CDL3LINESTRIKE,
        '3Outside': talib.CDL3OUTSIDE,
        '3StarsInSouth': talib.CDL3STARSINSOUTH,
        '3WhiteSoldiers': talib.CDL3WHITESOLDIERS,
        'AbandonedBaby': talib.CDLABANDONEDBABY,
        'AdvanceBlock': talib.CDLADVANCEBLOCK,
        'BeltHold': talib.CDLBELTHOLD,
        'Breakaway': talib.CDLBREAKAWAY,
        'ClosingMarubozu': talib.CDLCLOSINGMARUBOZU,
        'ConcealBabySwall': talib.CDLCONCEALBABYSWALL,
        'CounterAttack': talib.CDLCOUNTERATTACK,
        'DarkCloudCover': talib.CDLDARKCLOUDCOVER,
        'Doji': talib.CDLDOJI,
        'DojiStar': talib.CDLDOJISTAR,
        'DragonflyDoji': talib.CDLDRAGONFLYDOJI,
        'Engulfing': talib.CDLENGULFING,
        'EveningDojiStar': talib.CDLEVENINGDOJISTAR,
        'EveningStar': talib.CDLEVENINGSTAR,
        'GapSideSideWhite': talib.CDLGAPSIDESIDEWHITE,
        'GravestoneDoji': talib.CDLGRAVESTONEDOJI,
        'Hammer': talib.CDLHAMMER,
        'HangingMan': talib.CDLHANGINGMAN,
        'Harami': talib.CDLHARAMI,
        'HaramiCross': talib.CDLHARAMICROSS,
        'HighWave': talib.CDLHIGHWAVE,
        'Hikkake': talib.CDLHIKKAKE,
        'HikkakeMod': talib.CDLHIKKAKEMOD,
        'HomingPigeon': talib.CDLHOMINGPIGEON,
        'Identical3Crows': talib.CDLIDENTICAL3CROWS,
        'InNeck': talib.CDLINNECK,
        'InvertedHammer': talib.CDLINVERTEDHAMMER,
        'Kicking': talib.CDLKICKING,
        'KickingByLength': talib.CDLKICKINGBYLENGTH,
        'LadderBottom': talib.CDLLADDERBOTTOM,
        'LongLeggedDoji': talib.CDLLONGLEGGEDDOJI,
        'LongLine': talib.CDLLONGLINE,
        'Marubozu': talib.CDLMARUBOZU,
        'MatchingLow': talib.CDLMATCHINGLOW,
        'MatHold': talib.CDLMATHOLD,
        'MorningDojiStar': talib.CDLMORNINGDOJISTAR,
        'MorningStar': talib.CDLMORNINGSTAR,
        'OnNeck': talib.CDLONNECK,
        'Piercing': talib.CDLPIERCING,
        'RickshawMan': talib.CDLRICKSHAWMAN,
        'RiseFall3Methods': talib.CDLRISEFALL3METHODS,
        'SeparatingLines': talib.CDLSEPARATINGLINES,
        'ShootingStar': talib.CDLSHOOTINGSTAR,
        'ShortLine': talib.CDLSHORTLINE,
        'SpinningTop': talib.CDLSPINNINGTOP,
        'StalledPattern': talib.CDLSTALLEDPATTERN,
        'StickSandwich': talib.CDLSTICKSANDWICH,
        'Takuri': talib.CDLTAKURI,
        'TasukiGap': talib.CDLTASUKIGAP,
        'Thrusting': talib.CDLTHRUSTING,
        'Tristar': talib.CDLTRISTAR,
        'Unique3River': talib.CDLUNIQUE3RIVER,
        'UpsideGap2Crows': talib.CDLUPSIDEGAP2CROWS,
        'XsideGap3Methods': talib.CDLXSIDEGAP3METHODS
    }
    '''
    # Apply each pattern and create corresponding columns
    for pattern_name, pattern_function in patterns.items():
        df[pattern_name] = pattern_function(df['Open'], df['High'], df['Low'], df['Close'])

    # Convert signal values from -100, 100 to binary (1 = pattern detected, 0 = no pattern)
    df = df.applymap(lambda x: 1 if x > 0 else (0 if x == 0 else -1))

    # Ensure columns begin with uppercase letters
    df.columns = [col.capitalize() for col in df.columns]
    '''
    # Apply each pattern and create corresponding columns
    for pattern_name, pattern_function in patterns.items():
        df[pattern_name] = pattern_function(df['Open'], df['High'], df['Low'], df['Close'])

    # Convert signal values from -100, 100 to binary (1 = pattern detected, 0 = no pattern)
    # Exclude the 'Open', 'High', 'Low', 'Close', and 'Volume' columns from the conversion
    exclude_columns = ['Open', 'High', 'Low', 'Close', 'Volume']
    df.loc[:, ~df.columns.isin(exclude_columns)] = df.loc[:, ~df.columns.isin(exclude_columns)].applymap(lambda x: 1 if x > 0 else (0 if x == 0 else -1))

    # Ensure columns begin with uppercase letters
    df.columns = [col.capitalize() for col in df.columns]

    return df
    
    


def get_stock_data(ticker, timeframe, start_date, end_date):
    def get_data(ticker, timeframe, start_date, end_date):
        
            import func_tfunc as tfunc
        
            data_dict = tfunc.historicaldata(sym=ticker,inter=timeframe,start=start_date,end=end_date)
            
            # Convert the list of dictionaries into a DataFrame
            df = pd.DataFrame(data_dict)['history']['day']
            
            # Convert to DataFrame
            df2 = pd.DataFrame(df)

            # Optionally, convert the 'date' column to datetime format and sort by date
            df2['date'] = pd.to_datetime(df2['date'], format='%Y-%m-%d')
            df2 = df2.sort_values(by='date')
            
            # Capitalize the column names
            df2.columns = [col.capitalize() for col in df2.columns]
            
            # Ensure the 'Date' column is in datetime format
            df2['Date'] = pd.to_datetime(df2['Date'])
            
            # Calculate the variation for each row compared to the previous row
            df2['Variation'] = df2['Close'].pct_change()

            df2.dropna(inplace=True)
            
            final = df2.copy()
            
            final['Date'] = pd.to_datetime(final['Date'], format='%Y-%m-%d')

            return final
        
            # Get the data
    df = get_data(ticker, timeframe, start_date, end_date)

    #Clean again
    df['Date'] = pd.to_datetime(df['Date'])
    df.set_index('Date', inplace=True)
    
    return df








# Get Data Functions;


def app_get_data(ticker="AAPL", timeframe="daily", st="start_date", ed="end_date", selected_data="stock_data"):
    
    def get_data_by_ticker(ticker="AAPL", timeframe="daily", st=st, ed=ed):
        return get_stock_data(ticker, timeframe, st, ed)

    def calculate_candle_signals(data_frame):
        return calculate_candlestick_patterns(data_frame)


    if selected_data=="stock_data":
        final_data_frame = get_data_by_ticker(ticker=ticker, timeframe=timeframe, st=st, ed=ed)

    elif selected_data=="with_signals":
        final_data_frame = calculate_candle_signals(get_data_by_ticker(ticker=ticker, timeframe=timeframe, st=st, ed=ed))

    return final_data_frame






def load_selected_data(ticker="AAPL", timeframe="daily", st=start_date, ed=end_date, selected_data="with_signals"):
    data = app_get_data(ticker=ticker, timeframe=timeframe, st=st, ed=ed, selected_data=selected_data)
    return data

data_manager["stock_data_v2"] = load_selected_data



# Define dropdown options
ticker_options = [{'label': 'AAPL', 'value': 'AAPL'}, {'label': 'MSFT', 'value': 'MSFT'}, {'label': 'GOOG', 'value': 'GOOG'}]

data_choice_options = [{'label': 'Basic Data', 'value': 'stock_data'}, {'label': 'With Candle Signals', 'value': 'with_signals'}]

candlestick_signal_options = patterns = [
    {'label': 'None', 'value': 'None'},
    {'label': '2 Crows', 'value': 'CDL2CROWS'},
    {'label': '3 Black Crows', 'value': 'CDL3BLACKCROWS'},
    {'label': '3 Inside Up/Down', 'value': 'CDL3INSIDE'},
    {'label': '3 Line Strike', 'value': 'CDL3LINESTRIKE'},
    {'label': '3 Outside Up/Down', 'value': 'CDL3OUTSIDE'},
    {'label': '3 Stars In South', 'value': 'CDL3STARSINSOUTH'},
    {'label': '3 White Soldiers', 'value': 'CDL3WHITESOLDIERS'},
    {'label': 'Abandoned Baby', 'value': 'CDLABANDONEDBABY'},
    {'label': 'Advance Block', 'value': 'CDLADVANCEBLOCK'},
    {'label': 'Belt Hold', 'value': 'CDLBELTHOLD'},
    {'label': 'Breakaway', 'value': 'CDLBREAKAWAY'},
    {'label': 'Closing Marubozu', 'value': 'CDLCLOSINGMARUBOZU'},
    {'label': 'Concealing Baby Swallow', 'value': 'CDLCONCEALBABYSWALL'},
    {'label': 'Counterattack', 'value': 'CDLCOUNTERATTACK'},
    {'label': 'Dark Cloud Cover', 'value': 'CDLDARKCLOUDCOVER'},
    {'label': 'Doji', 'value': 'CDLDOJI'},
    {'label': 'Doji Star', 'value': 'CDLDOJISTAR'},
    {'label': 'Dragonfly Doji', 'value': 'CDLDRAGONFLYDOJI'},
    {'label': 'Engulfing', 'value': 'CDLENGULFING'},
    {'label': 'Evening Doji Star', 'value': 'CDLEVENINGDOJISTAR'},
    {'label': 'Evening Star', 'value': 'CDLEVENINGSTAR'},
    {'label': 'Gap Side-by-Side White', 'value': 'CDLGAPSIDESIDEWHITE'},
    {'label': 'Gravestone Doji', 'value': 'CDLGRAVESTONEDOJI'},
    {'label': 'Hammer', 'value': 'CDLHAMMER'},
    {'label': 'Hanging Man', 'value': 'CDLHANGINGMAN'},
    {'label': 'Harami', 'value': 'CDLHARAMI'},
    {'label': 'Harami Cross', 'value': 'CDLHARAMICROSS'},
    {'label': 'High-Wave Candle', 'value': 'CDLHIGHWAVE'},
    {'label': 'Hikkake', 'value': 'CDLHIKKAKE'},
    {'label': 'Modified Hikkake', 'value': 'CDLHIKKAKEMOD'},
    {'label': 'Homing Pigeon', 'value': 'CDLHOMINGPIGEON'},
    {'label': 'Identical Three Crows', 'value': 'CDLIDENTICAL3CROWS'},
    {'label': 'In Neck', 'value': 'CDLINNECK'},
    {'label': 'Inverted Hammer', 'value': 'CDLINVERTEDHAMMER'},
    {'label': 'Kicking', 'value': 'CDLKICKING'},
    {'label': 'Kicking By Length', 'value': 'CDLKICKINGBYLENGTH'},
    {'label': 'Ladder Bottom', 'value': 'CDLLADDERBOTTOM'},
    {'label': 'Long-Legged Doji', 'value': 'CDLLONGLEGGEDDOJI'},
    {'label': 'Long Line Candle', 'value': 'CDLLONGLINE'},
    {'label': 'Marubozu', 'value': 'CDLMARUBOZU'},
    {'label': 'Matching Low', 'value': 'CDLMATCHINGLOW'},
    {'label': 'Mat Hold', 'value': 'CDLMATHOLD'},
    {'label': 'Morning Doji Star', 'value': 'CDLMORNINGDOJISTAR'},
    {'label': 'Morning Star', 'value': 'CDLMORNINGSTAR'},
    {'label': 'On Neck', 'value': 'CDLONNECK'},
    {'label': 'Piercing', 'value': 'CDLPIERCING'},
    {'label': 'Rickshaw Man', 'value': 'CDLRICKSHAWMAN'},
    {'label': 'Rising/Falling Three Methods', 'value': 'CDLRISEFALL3METHODS'},
    {'label': 'Separating Lines', 'value': 'CDLSEPARATINGLINES'},
    {'label': 'Shooting Star', 'value': 'CDLSHOOTINGSTAR'},
    {'label': 'Short Line Candle', 'value': 'CDLSHORTLINE'},
    {'label': 'Spinning Top', 'value': 'CDLSPINNINGTOP'},
    {'label': 'Stalled Pattern', 'value': 'CDLSTALLEDPATTERN'},
    {'label': 'Stick Sandwich', 'value': 'CDLSTICKSANDWICH'},
    {'label': 'Takuri', 'value': 'CDLTAKURI'},
    {'label': 'Tasuki Gap', 'value': 'CDLTASUKIGAP'},
    {'label': 'Thrusting', 'value': 'CDLTHRUSTING'},
    {'label': 'Tristar', 'value': 'CDLTRISTAR'},
    {'label': 'Unique 3 River', 'value': 'CDLUNIQUE3RIVER'},
    {'label': 'Upside Gap Two Crows', 'value': 'CDLUPSIDEGAP2CROWS'},
    {'label': 'Upside/Downside Gap Three Methods', 'value': 'CDLXSIDEGAP3METHODS'}
]


@capture("graph")
def chart_v7(data_frame, ticker, start_date, end_date):
    fig = go.Figure()
    
    # Candlestick chart trace
    fig.add_trace(go.Candlestick(x=data_frame.index, 
                                 open=data_frame['Open'], 
                                 close=data_frame['Close'], 
                                 high=data_frame['High'], 
                                 low=data_frame['Low']))

    # Left-side buttons (updatemenus) with new options
    updatemenus = [dict(
        type='buttons',
        showactive=False,
        buttons=[
            dict(label='1 Wk', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=7), data_frame.index[-1]]}]),
            dict(label='2 Wk', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=14), data_frame.index[-1]]}]),
            dict(label='3 Wk', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=21), data_frame.index[-1]]}]),
            dict(label='1 Mth', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=30), data_frame.index[-1]]}]),
            dict(label='1 Qtr', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=92), data_frame.index[-1]]}]),
            dict(label='2 Qtr', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=183), data_frame.index[-1]]}]),
            dict(label='3 Qtr', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=276), data_frame.index[-1]]}]),
            dict(label='1 Yr', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=365), data_frame.index[-1]]}]),
            dict(label='Max', method='relayout', args=[{'xaxis.range': [data_frame.index[0], data_frame.index[-1]]}])
        ],
        direction='down',
        pad={"r": 10, "t": 10},  # Add margin/padding
        x=1.1,  # Move buttons closer to the graph
        y=0.5,  # Center buttons vertically with the y-axis
        xanchor='left',
        yanchor='middle',  # Center with the y-axis
        bgcolor='green',
        bordercolor='white',
        font=dict(color='black', size=10)  # Smaller font size
    )]
    
    # Get the min and max of the y-axis based on visible data range
    def calculate_yaxis_range(df):
        visible_data = df.loc[start_date:end_date]  # Only consider the data in the current x-axis range
        price_min = visible_data['Low'].min()
        price_max = visible_data['High'].max()

        # Safe space: Add 5% padding above and below the data range
        padding = 0.05 * (price_max - price_min)
        return [price_min - padding, price_max + padding]

    # Dynamically adjust the y-axis range based on visible data
    yaxis_range = calculate_yaxis_range(data_frame)

    # Layout updates for dynamic y-axis and chart appearance
    fig.update_layout(
        template='plotly_dark',
        xaxis=dict(
            rangeslider_visible=False,  # Disable range slider
            domain=[0, 1],  # Full width for x-axis
            anchor='y'
        ),
        yaxis=dict(
            domain=[0, 1],  # Full height for y-axis to consume the extra space
            autorange=False,   # Disable autorange since we are setting a custom range
            range=yaxis_range, # Dynamic range with safe space
            tickprefix='$'
        ),
        updatemenus=updatemenus,
        height=900,  # Increase chart height
        margin=dict(l=80, r=20, t=30, b=30),  # Reduce margins for better space utilization
        showlegend=False,  # Hide the legend
    )

    # Set x-axis range based on user-specified start and end dates
    fig.update_xaxes(range=[start_date, end_date])

    return fig









@capture("graph")
def chart_v8(data_frame, ticker="AAPL", start_date="2022-01-01", end_date="2022-12-31", patterns=None, indicator=None):
    import plotly.graph_objects as go
    from plotly.subplots import make_subplots

    # Create subplots with 2 rows, shared x-axis
    fig = make_subplots(rows=2, cols=1, shared_xaxes=True, 
                        row_heights=[0.7, 0.3],  # Adjust height ratios
                        vertical_spacing=0.05)   # Spacing between the plots
    
    # Candlestick chart trace (Main Chart)
    fig.add_trace(go.Candlestick(x=data_frame.index, 
                                 open=data_frame['Open'], 
                                 close=data_frame['Close'], 
                                 high=data_frame['High'], 
                                 low=data_frame['Low']), row=1, col=1)
    
    # Add candlestick pattern signals from DataFrame
    if patterns is not None:
        for pattern in patterns:
            # Check if the pattern column exists in the DataFrame
            if pattern in data_frame.columns:
                # Plot bullish patterns (green triangles below candles)
                bullish_signals = data_frame[data_frame[pattern] == 1]
                fig.add_trace(go.Scatter(
                    x=bullish_signals.index, 
                    y=bullish_signals['Low'],  # Plot below the low price for bullish patterns
                    mode='markers',
                    marker=dict(symbol='triangle-up', color='green', size=10),
                    name=f'{pattern} Bullish',
                    showlegend=False
                ), row=1, col=1)
                
                # Plot bearish patterns (red triangles above candles)
                bearish_signals = data_frame[data_frame[pattern] == -1]
                fig.add_trace(go.Scatter(
                    x=bearish_signals.index, 
                    y=bearish_signals['High'],  # Plot above the high price for bearish patterns
                    mode='markers',
                    marker=dict(symbol='triangle-down', color='red', size=10),
                    name=f'{pattern} Bearish',
                    showlegend=False
                ), row=1, col=1)
    
    # Add indicator subplot (e.g., RSI or Moving Average)
    if indicator is not None:
        fig.add_trace(go.Scatter(
            x=data_frame.index,
            y=data_frame[indicator['value']],  # Assuming this contains your indicator values
            mode='lines',
            line=dict(color='blue'),
            name=indicator['name']  # Indicator name, e.g., 'RSI'
        ), row=2, col=1)
    
    # Update x-axis range selector (same as before)
    fig.update_xaxes(
        rangeslider_visible=False,
        domain=[0, 1],  # Full width for x-axis
        anchor='y'
    )
    
    # Left-side buttons (same as before)
    updatemenus = [dict(
        type='buttons',
        showactive=False,
        buttons=[
            dict(label='1 Wk', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=7), data_frame.index[-1]]}]),
            dict(label='2 Wk', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=14), data_frame.index[-1]]}]),
            dict(label='3 Wk', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=21), data_frame.index[-1]]}]),
            dict(label='1 Mth', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=30), data_frame.index[-1]]}]),
            dict(label='1 Qtr', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=92), data_frame.index[-1]]}]),
            dict(label='2 Qtr', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=183), data_frame.index[-1]]}]),
            dict(label='3 Qtr', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=276), data_frame.index[-1]]}]),
            dict(label='1 Yr', method='relayout', args=[{'xaxis.range': [data_frame.index[-1] - pd.Timedelta(days=365), data_frame.index[-1]]}]),
            dict(label='Max', method='relayout', args=[{'xaxis.range': [data_frame.index[0], data_frame.index[-1]]}])
        ],
        direction='down',
        pad={"r": 10, "t": 10},  # Add margin/padding
        x=1.1,  # Move buttons closer to the graph
        y=0.5,  # Center buttons vertically with the y-axis
        xanchor='left',
        yanchor='middle',  # Center with the y-axis
        bgcolor='green',
        bordercolor='white',
        font=dict(color='black', size=10)  # Smaller font size
    )]
    
    # Layout updates for dynamic y-axis and chart appearance
    fig.update_layout(
        template='plotly_dark',
        xaxis=dict(domain=[0, 1]),  # Full width for x-axis
        yaxis=dict(
            autorange=False,   # Disable autorange since we are setting a custom range
            tickprefix='$'
        ),
        updatemenus=updatemenus,
        height=900,  # Increase chart height
        margin=dict(l=80, r=20, t=30, b=30),  # Reduce margins for better space utilization
        showlegend=False,  # Hide the legend
    )

    # Set x-axis range based on user-specified start and end dates
    fig.update_xaxes(range=[start_date, end_date], row=1, col=1)

    return fig






# app page layout

page1 = vm.Page(
    title="Stock Chart Basic",
    components=[
        vm.Graph(id="graph2", 
                 figure=chart_v7(
                     "stock_data_v2", 
                     'stock_data_v2.ticker', 
                     start_date, 
                     end_date))
    ],
    controls=[
        vm.Parameter(
            targets=["graph2.data_frame.ticker"],
            selector=vm.Dropdown(
                id='ticker_dropdown', 
                options=ticker_options, 
                value='AAPL', 
                multi=False), 
        )
    ],
)


page2 = vm.Page(
    title="Stock Chart Advanced",
    components=[
        vm.Graph(id="graph3", 
                 figure=chart_v8(
                     "stock_data_v2", 
                     "stock_data_v2.ticker", 
                     start_date, 
                     end_date, 
                     patterns="None", 
                     indicator="None"))
    ],
    controls=[
        vm.Parameter(
            targets=["graph3.data_frame.ticker"],
            selector=vm.Dropdown(id='ticker_dropdown2', 
                                 options=ticker_options, 
                                 value='AAPL', 
                                 multi=False), 
        ),
        #vm.Parameter(
        #    targets=["graph3.data_frame.selected_data"],
        #    selector=vm.Dropdown(id='selected_data_dropdown', 
        #                         options=data_choice_options,  
        #                         value='stock_data', 
        #                         multi=False)
        #),
        vm.Parameter(
            targets=["graph3.patterns"],
            selector=vm.Dropdown(id='patterns_dropdown', 
                                 options=candlestick_signal_options, 
                                 value='None', 
                                 multi=False)
        )
    ],
)

dashboard = vm.Dashboard(pages=[page1, page2])

Vizro().build(dashboard).run()