import numpy as np
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
def solve_diffusion_equation(nx, ny, nz, nt, D, dt, initial_conditions):
"""
Solve the diffusion equation using finite differences.
Parameters:
- nx, ny, nz: Number of grid points in the x, y, and z directions
- nt: Number of time steps
- D: Diffusion coefficient
- dt: Time step size
- initial_conditions: A function that takes x, y, z and returns the initial condition
Returns:
- A list of 3D arrays representing the solution at each time step
"""
dx = 1.0 / (nx - 1)
dy = 1.0 / (ny - 1)
dz = 1.0 / (nz - 1)
u = np.zeros((nx, ny, nz))
u_new = np.zeros((nx, ny, nz))
# Set initial conditions
for i in range(nx):
for j in range(ny):
for k in range(nz):
u[i, j, k] = initial_conditions(i * dx, j * dy, k * dz)
results = [u.copy()]
for n in range(nt):
for i in range(1, nx-1):
for j in range(1, ny-1):
for k in range(1, nz-1):
u_new[i, j, k] = (
u[i, j, k]
+ D * dt / dx**2 * (u[i+1, j, k] - 2 * u[i, j, k] + u[i-1, j, k])
+ D * dt / dy**2 * (u[i, j+1, k] - 2 * u[i, j, k] + u[i, j-1, k])
+ D * dt / dz**2 * (u[i, j, k+1] - 2 * u[i, j, k] + u[i, j, k-1])
)
u[:] = u_new[:]
results.append(u.copy())
return results
# Parameters
nx, ny, nz = 20, 20, 20
nt = 50
D = 0.1
dt = 0.01
# Initial conditions function
def initial_conditions(x, y, z):
return np.exp(-((x-0.5)**2 + (y-0.5)**2 + (z-0.5)**2) / 0.1)
# Solve the diffusion equation
results = solve_diffusion_equation(nx, ny, nz, nt, D, dt, initial_conditions)
# Initialize Dash app
app = dash.Dash(__name__)
app.layout = html.Div([
dcc.Graph(id='diffusion-graph'),
dcc.Slider(
id='time-slider',
min=0,
max=nt-1,
step=1,
value=0,
marks={i: str(i) for i in range(0, nt, nt//10)}
)
])
@app.callback(
dash.dependencies.Output('diffusion-graph', 'figure'),
[dash.dependencies.Input('time-slider', 'value')]
)
def update_graph(time_step):
data = results[time_step]
trace = go.Volume(
x=np.repeat(np.linspace(0, 1, nx), ny * nz),
y=np.tile(np.repeat(np.linspace(0, 1, ny), nz), nx),
z=np.tile(np.linspace(0, 1, nz), nx * ny),
value=data.flatten(),
isomin=0,
isomax=1,
opacity=0.1,
surface_count=10,
)
layout = go.Layout(
scene=dict(
xaxis=dict(nticks=10, range=[0, 1]),
yaxis=dict(nticks=10, range=[0, 1]),
zaxis=dict(nticks=10, range=[0, 1]),
),
margin=dict(r=0, l=0, b=0, t=0)
)
return go.Figure(data=[trace], layout=layout)
if __name__ == '__main__':
app.run_server(debug=True)