Py.Cafe

jaguilarh/

Solaris

Solaris

DocsPricing
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import solara as sol
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.express as px
import leafmap
from datetime import datetime

value1  = sol.reactive(5)
value2  = sol.reactive(1)
value3  = sol.reactive(1.5)
value4  = sol.reactive(1)
value5  = sol.reactive(30)
value6  = sol.reactive(0.1)
value7  = sol.reactive(0.002)
value8  = sol.reactive(0.005)
value9  = sol.reactive(0)
value10 = sol.reactive(-16.4024)
value11 = sol.reactive(-71.5378)
value12 = sol.reactive(datetime.strptime('2024-06-28', '%Y-%m-%d'))
value13 = sol.reactive(13)
value14 = sol.reactive(43)

class Map(leafmap.Map):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        # self.add_marker(location = (value10.value, value11.value))

def mirror(x1, x2):
    x3 = 2 * x1 - x2
    return x3

def rotation(xor, yor, xar, yar, ang): # xor y yor son las coordenadas del centro de rotacion
    ang = ang * (np.pi / 180)
    cor = np.column_stack((xar - xor, yar - yor))
    mor = np.array([[np.cos(ang), - np.sin(ang)], [np.sin(ang), np.cos(ang)]])
    cro = np.dot(cor, mor.T)
    xro = cro[:, 0] + xor
    yro = cro[:, 1] + yor
    return xro, yro

@sol.component
def Page():
    sol.lab.theme.dark = False
    sol.lab.theme.themes.light.primary = "#fa8b02"
    sol.Title('Proyecto Solaris')
    with sol.AppBar():
        sol.Markdown('*Desarrollado por Junior Aguilar*')
    with sol.Sidebar():     
        with sol.Columns([1, 1]):
            with sol.Column(gap = '20px', margin = 0):
                sol.InputFloat('Latitud', value = value10)
                sol.SliderInt('Hora', value = value13, min = 0, max = 24, step = 1)
            with sol.Column(gap = '20px', margin = 0):
                sol.InputFloat('Longitud', value = value11)
                sol.SliderInt('Minutos', value = value14, min = 0, max = 60, step = 1)
        Map.element(
            center = ((value10.value, value11.value)),
            zoom   = 18,
            draw_control = False,
            measure_control = False,
            fullscreen_control = False,
            attribution_control = True,
            height = '200px',
        )
        sol.lab.InputDate(value12)
    with sol.Columns([1, 1, 1]):
        with sol.Column(gap = '20px', margin = 0):
            sol.InputFloat('Foco Y', value = value1)
            sol.InputFloat('Foco Z', value = value2) 
        with sol.Column(gap = '20px', margin = 0):
            sol.InputFloat('Diámetro de la circunferencia', value = value3)
            sol.InputFloat('Altura de la circunferencia', value = value4)           
        with sol.Column(gap = '20px', margin = 0):
            sol.InputFloat('Espesor del espejo', value = value7)
            sol.InputFloat('Espesor del marco', value = value8)
    sol.SliderInt('Ángulo de rotación', value = value9, min = -90, max = 90, step = 1)
    with sol.Card(title = 'Esquema de perfil', subtitle = 'A ' + str(value9.value) + ' grados', elevation = 5):
        with sol.Column(align = 'center'):
            fig1, axe1 = plt.subplots()

            c1 = (8 * value1.value ** 2 * (value4.value - value2.value) + 2 * value3.value ** 2 * (value4.value + value2.value) + (4 * value1.value ** 2 - value3.value ** 2) * np.sqrt(4 * (value4.value - value2.value) ** 2 + value3.value ** 2)) / (4 * value3.value ** 2)
            a1 = ((c1 - value2.value) + np.sqrt((value2.value - c1) ** 2 + value1.value ** 2)) / (2 * value1.value ** 2)
            b1 = ((value2.value - c1) - np.sqrt((value2.value - c1) ** 2 + value1.value ** 2)) / value1.value
            s1 = value1.value - value3.value / 2
            s2 = value1.value + value3.value / 2
            y1 = np.linspace(s1, s2, 50)
            z1 = a1 * y1 ** 2 + b1 * y1 + c1
            y1, z1 = rotation(value1.value, value2.value, y1, z1, value9.value)
            axe1.plot(y1, z1, '--k', alpha = 0.35)

            verti_y = - b1 / (2 * a1)
            verti_z = - (b1 ** 2 - 4 * a1 * c1) / (4 * a1)
            circl_1 = np.linspace(np.pi, 2 * np.pi, 50)
            y2 = (value2.value - verti_z) * np.cos(circl_1) + value1.value
            z2 = (value2.value - verti_z) * np.sin(circl_1) + value2.value
            axe1.plot(y2, z2, '--k', alpha = 0.35)

            m1 = 2 * a1 * s1 + b1
            t1 = (m1) ** 2 + 1
            t2 = (4 * a1 * s1 + 2 * b1) * (c1 - value4.value) - 2 * s1 * (2 * a1 ** 2 * s1 ** 2 + a1 * b1 * s1 + 1)
            t3 = s1 ** 2 * (a1 ** 2 * s1 ** 2 + 1) + (value4.value - c1) * (2 * a1 * s1 ** 2 + value4.value - c1) - (value6.value / 2) ** 2
            p1y = (- t2 + np.sqrt(t2 ** 2 - 4 * t1 * t3)) / (2 * t1)
            p1z = (m1) * p1y + (c1 - a1 * s1 ** 2)
            p2y = (- t2 - np.sqrt(t2 ** 2 - 4 * t1 * t3)) / (2 * t1)
            p2z = (m1) * p2y + (c1 - a1 * s1 ** 2)
            p3y = p2y - abs(m1 * value7.value) / np.sqrt(m1 ** 2 + 1)
            p3z = p2z - value7.value / np.sqrt(m1 ** 2 + 1)
            p4y = p1y - abs(m1 * value7.value) / np.sqrt(m1 ** 2 + 1)
            p4z = p1z - value7.value / np.sqrt(m1 ** 2 + 1)
            
            l1 = (abs(m1) * value7.value + value6.value) / np.sqrt(m1 ** 2 + 1)
            radio_o = value3.value / 2
            radio_i = abs(radio_o - value6.value / (2 * np.sqrt(m1 ** 2 + 1)))
            radio_e = np.sqrt((radio_i + l1) ** 2 + (radio_i * np.tan((180 / value5.value) * (np.pi / 180))) ** 2)
            print(radio_e - radio_o)
            punye_i = np.array([p1y, p2y, p3y, p4y])
            punze_i = np.array([p1z, p2z, p3z, p4z])
            punye_i, punze_i = rotation(value1.value, value2.value, punye_i, punze_i, value9.value)
            axe1.fill(punye_i, punze_i, color = 'blue')
            punym_i = np.array([p2y + value8.value, p2y + value8.value, value1.value - radio_e - value8.value, value1.value - radio_e - value8.value, p1y + value8.value, p1y + value8.value, p1y, p1y, value1.value - radio_e, value1.value - radio_e])
            punzm_i = np.array([p2z, p2z + value8.value, p2z + value8.value, p4z - value8.value, p4z - value8.value, p1z + value8.value, p1z + value8.value, p4z, p4z, p2z])
            punym_i, punzm_i = rotation(value1.value, value2.value, punym_i, punzm_i, value9.value)
            axe1.fill(punym_i, punzm_i, color = 'cyan')
            punye_d = mirror(value1.value, np.array([p1y, p2y, p3y, p4y]))
            punye_d, punze_i = rotation(value1.value, value2.value, punye_d, np.array([p1z, p2z, p3z, p4z]), value9.value)
            axe1.fill(punye_d, punze_i, color = 'blue')
            punym_d = mirror(value1.value, np.array([p2y + value8.value, p2y + value8.value, value1.value - radio_e - value8.value, value1.value - radio_e - value8.value, p1y + value8.value, p1y + value8.value, p1y, p1y, value1.value - radio_e, value1.value - radio_e]))
            punym_d, punzm_i = rotation(value1.value, value2.value, punym_d, np.array([p2z, p2z + value8.value, p2z + value8.value, p4z - value8.value, p4z - value8.value, p1z + value8.value, p1z + value8.value, p4z, p4z, p2z]), value9.value)
            axe1.fill(punym_d, punzm_i, color = 'cyan')

            m2 =  2 * np.arctan(m1) + np.pi / 2
            d1 = value6.value * np.sin(np.arctan(m1) + np.pi - m2) / np.cos(m2)
            d2 = np.sqrt((value1.value - p1y) ** 2 + (value2.value - d1 / 2 - p1z) ** 2)
            d3 = np.sqrt((value1.value - p2y) ** 2 + (value2.value + d1 / 2 - p2z) ** 2)
            y3 = np.array([p1y, p1y + d2 * np.cos(m2), p2y + d3 * np.cos(m2), p2y])
            z3 = np.array([p1z, p1z + d2 * np.sin(m2), p2z + d3 * np.sin(m2), p2z])
            y8, z8 = rotation(value1.value, value2.value, y3, z3, value9.value)
            axe1.fill(y8, z8, color = 'yellow', alpha = 0.35)
            y9, z9 = rotation(value1.value, value2.value, mirror(value1.value, y3), z3, value9.value)
            axe1.fill(y9, z9, color = 'yellow', alpha = 0.35)
            
            axe1.axis('equal')
            axe1.grid(alpha = 0.35)
            axe1.set_xlabel('Y')
            axe1.set_ylabel('Z')
            sol.FigureMatplotlib(fig1)
    with sol.Columns([1, 1]):
        with sol.Column(align = 'stretch'):      
            sol.SliderInt('Número de espejos', value = value5, min = 3, max = 100, step = 1, thumb_label = False)      
            with sol.Card(title = 'Esquema de planta', subtitle = str(value5.value) + ' espejos con una inclinación respecto a la horizontal de ' + str(round(abs(np.arctan(m1) * (180 / np.pi)), 2)) + ' grados', elevation = 5):
                fig2, axe2 = plt.subplots()

                y4 = radio_i * np.cos(circl_1) + value1.value
                x4 = radio_i * np.sin(circl_1)
                y5 = radio_o * np.cos(circl_1) + value1.value
                x5 = radio_o * np.sin(circl_1)
                y6 = radio_e * np.cos(circl_1) + value1.value
                x6 = radio_e * np.sin(circl_1)
                verty_e = value1.value + radio_i * abs(np.tan((180 / value5.value) * (np.pi / 180)))
                y7 = np.array([verty_e, verty_e, mirror(value1.value, verty_e), mirror(value1.value, verty_e)])
                x7 = np.array([radio_i, radio_i + l1, radio_i + l1, radio_i])
                y10 = np.array([verty_e, mirror(value1.value, verty_e), mirror(value1.value, verty_e), verty_e])
                x10 = np.array([radio_i, radio_i, 0, 0])

                axe2.plot(y4, x4, linestyle = 'dashed', color = 'black')
                axe2.plot(y5, x5, linestyle = 'dashed', color = 'black')
                axe2.plot(y6, x6, linestyle = 'dashed', color = 'black')
                axe2.fill(y7, x7, color = 'blue', edgecolor = 'cyan')
                axe2.fill(y10, x10, color = 'yellow', alpha = 0.5)
                for i in range(1, int(value5.value)):
                    xi, yi = rotation(value1.value, 0, y7, x7, (360 / value5.value) * i)
                    axe2.fill(xi, yi, color = 'blue', edgecolor = 'cyan')
                    xi, yi = rotation(value1.value, 0, y10, x10, (360 / value5.value) * i)
                    axe2.fill(xi, yi, color = 'yellow', alpha = 0.1)

                axe2.axis('equal')
                axe2.grid(alpha = 0.35)
                axe2.set_xlabel('Y')
                axe2.set_ylabel('X')
                sol.FigureMatplotlib(fig2)
        with sol.Column(align = 'stretch'):
            sol.SliderFloat('Largo del espejo', value = value6, min = 0.05, max = 0.5, step = 0.005, thumb_label = False)
            with sol.Card(title = 'Esquema de detalle', subtitle = 'Espejos con altura de ' + str(value6.value) + ' m y ancho de ' + str(round(2 * radio_i * abs(np.tan((180 / value5.value) * (np.pi / 180))), 4)) + ' m', elevation = 5):
                fig3, axe3 = plt.subplots()

                axe3.fill(np.array([p1y, p2y, p3y, p4y]), np.array([p1z, p2z, p3z, p4z]), color = 'blue')
                axe3.fill(np.array([p2y + value8.value, p2y + value8.value, value1.value - radio_e - value8.value, value1.value - radio_e - value8.value, p1y + value8.value, p1y + value8.value, p1y, p1y, value1.value - radio_e, value1.value - radio_e]), np.array([p2z, p2z + value8.value, p2z + value8.value, p4z - value8.value, p4z - value8.value, p1z + value8.value, p1z + value8.value, p4z, p4z, p2z]), color = 'cyan')
                axe3.scatter([value1.value - radio_i, value1.value - radio_o, value1.value - radio_e], [value4.value, value4.value, value4.value], 50, color = 'black')
                axe3.axis('equal')
                axe3.grid(alpha = 0.35)
                axe3.set_xlabel('Y')
                axe3.set_ylabel('Z')
                sol.FigureMatplotlib(fig3)
    with sol.Columns([1, 1]):
        with sol.Column(align = 'stretch'):
            numer_e = np.arange(3, 101, 1)
            varia_l = np.arange(0.05, 0.505, 0.005)
            areat_r = []
            for i in numer_e:
                ancho_e = np.round(2 * radio_i * abs(np.tan((180 / i) * (np.pi / 180))), decimals = 4)
                areaf_l = np.round(ancho_e * varia_l * i, decimals = 4)
                areaf_l = areaf_l.tolist()
                areaf_l.insert(0, ancho_e)
                areaf_l.insert(0, i)
                areat_r.append(areaf_l)
            varia_l = list(map(str, np.round(varia_l, 3).tolist()))
            varia_l.insert(0, 'A / L')
            varia_l.insert(0, 'E')
            areat_r = pd.DataFrame(areat_r, columns = varia_l)
            sol.DataFrame(areat_r.iloc[17:48, :33], items_per_page = 19, scrollable = True)
        with sol.Column(align = 'stretch'):    
            x11 = []
            y11 = []
            z11 = []
            for i in range(len(numer_e)):
                for j in range(len(varia_l) - 2):  
                    x11.append(areat_r.iat[i, 1])
                    y11.append(varia_l[j + 2])
                    z11.append(areat_r.iloc[i, j + 2])
            xyz11 = pd.DataFrame({'Ancho': x11, 'Largo': y11, 'Area total': z11})
            fig = px.scatter_3d(xyz11, x = 'Ancho', y = 'Largo', z = 'Area total', color = 'Area total', opacity = 0.9)
            fig.update_traces(marker = dict(size = 2))
            fig.update_layout(
                margin = dict(l = 0, r = 0, t = 0, b = 0),
                scene = dict(
                    xaxis_title = 'Ancho del espejo',
                    yaxis_title = 'Largo del espejo',
                    zaxis_title = 'Area total de reflexión'
                ),
                # title = 'Area total de reflexión en función de las dimensiones de los espejos'
            )
            fig.show()
    
    
    plt.close('all')