Py.Cafe

jfitz001/

net-worth-forecasting

Net Worth Forecasting Tool

DocsPricing
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import streamlit as st
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from scipy.optimize import minimize_scalar



def calculate_net_worth_scenario(initial_net_worth, investment_return, investment_allocation, salary, savings_rate, savings_rate_growth, expenses, taxes, years, emergency_fund_target, retirement_age, current_age, social_security):
    net_worth = initial_net_worth
    net_worth_history = []
    emergency_fund = 0
    inflation_rate = 2.0  # Assume a 2% annual inflation rate
    
    for year in range(1, years + 1):
        age = current_age + year
        if age >= retirement_age:
            salary = 0  # Stop salary income after retirement
            annual_expenses = expenses  # Exclude taxes after retirement
            annual_income = social_security  # Include Social Security income
        else:
            annual_expenses = expenses + taxes  # Include taxes before retirement
            annual_income = salary  # Use salary as income before retirement

        annual_savings = annual_income * (savings_rate / 100)
        leftover_income = annual_income - annual_expenses
        
        if emergency_fund < emergency_fund_target:
            emergency_fund_contribution = min(annual_savings, emergency_fund_target - emergency_fund)
            emergency_fund += emergency_fund_contribution
            annual_savings -= emergency_fund_contribution
        
        net_worth += annual_savings
        net_worth += leftover_income
        
        # Calculate investment return on the allocated portion of net worth
        investment_portion = net_worth * (investment_allocation / 100)
        investment_return_amount = investment_portion * (investment_return / 100)
        net_worth += investment_return_amount
        
        savings_rate = min(savings_rate + savings_rate_growth, 100)
        
        # Apply inflation to expenses
        expenses *= (1 + inflation_rate / 100)
        
        net_worth_history.append(net_worth)
    
    return net_worth_history


def monte_carlo_simulation(initial_net_worth, base_investment_return, investment_allocation, salary, savings_rate, savings_rate_growth, expenses, taxes, years, emergency_fund_target, retirement_age, current_age, social_security, num_simulations=1000):
    simulation_results = []
    for _ in range(num_simulations):
        random_return = np.random.normal(base_investment_return, 2)  # Assuming a standard deviation of 2%
        net_worth_history = calculate_net_worth_scenario(initial_net_worth, random_return, investment_allocation, salary, savings_rate, savings_rate_growth, expenses, taxes, years, emergency_fund_target, retirement_age, current_age, social_security)
        simulation_results.append(net_worth_history[-1])  # Append the final net worth
    return simulation_results

def optimize_for_goal(target_net_worth, max_years, *args):
    # First, calculate the net worth with the current savings rate
    current_net_worth_history = calculate_net_worth_scenario(*args, years=max_years)
    final_net_worth = current_net_worth_history[-1]
    
    if final_net_worth >= target_net_worth:
        return args[5]  # Return the current savings rate if the goal is already achievable
    
    # If the goal isn't achievable with the current savings rate, optimize
    def objective(savings_rate):
        new_args = list(args)
        savings_rate_index = 5  # Assuming savings_rate is the 6th argument (index 5)
        years_index = -4  # Assuming years is the 4th to last argument
        new_args[savings_rate_index] = savings_rate
        new_args[years_index] = max_years
        
        net_worth_history = calculate_net_worth_scenario(*new_args)
        return abs(net_worth_history[-1] - target_net_worth)
    
    # Calculate the maximum possible savings rate based on income and expenses
    salary = args[3]  # Assuming salary is the 4th argument
    expenses = args[6]  # Assuming expenses is the 7th argument
    max_possible_savings_rate = max(0, min(100, (salary - expenses) / salary * 100))
    
    # Use the calculated max_possible_savings_rate as the upper bound
    current_savings_rate = args[5]
    result = minimize_scalar(objective, bounds=(current_savings_rate, max_possible_savings_rate), method='bounded')
    return result.x

def perform_sensitivity_analysis(base_scenario, parameter_ranges):
    results = {}
    for param, range_values in parameter_ranges.items():
        param_results = []
        for value in range_values:
            scenario = base_scenario.copy()
            scenario[param] = value
            net_worth_history = calculate_net_worth_scenario(**scenario)
            param_results.append(net_worth_history[-1])
        results[param] = param_results
    return results

def optimize_retirement_age(target_net_worth, max_age, *args):
    def objective(retirement_age):
        unpacked_args = list(args)
        unpacked_args[-2] = retirement_age  # Replace the original retirement_age
        net_worth_history = calculate_net_worth_scenario(*unpacked_args)
        return abs(net_worth_history[-1] - target_net_worth)
    
    current_age = args[-2]  # Assuming current_age is the second-to-last argument
    result = minimize_scalar(objective, bounds=(current_age, max_age), method='bounded')
    return int(result.x)

def suggest_tax_optimization(salary, current_tax):
    tax_rate = current_tax / salary * 100
    suggestions = []
    
    if tax_rate > 30:
        suggestions.append("Consider maximizing contributions to tax-advantaged accounts like 401(k) or IRA.")
    if tax_rate > 25:
        suggestions.append("Look into tax-loss harvesting strategies for your investments.")
    if tax_rate > 20:
        suggestions.append("Explore potential deductions you might be missing, such as charitable contributions or business expenses.")
    
    return suggestions

def optimize_investment_allocation(risk_tolerance, time_horizon, current_age, retirement_age):
    # Simple allocation strategy based on risk tolerance and time horizon
    years_to_retirement = retirement_age - current_age
    stock_allocation = min(110 - current_age, 90)  # Basic age-based rule
    
    # Adjust based on risk tolerance (1-10 scale)
    stock_allocation += (risk_tolerance - 5) * 5
    
    # Adjust based on time horizon
    if time_horizon < 5:
        stock_allocation = max(stock_allocation - 20, 20)
    elif time_horizon > 15:
        stock_allocation = min(stock_allocation + 10, 90)
    
    bond_allocation = 100 - stock_allocation
    return {"Stocks": stock_allocation, "Bonds": bond_allocation}

def main():
    st.title("Net Worth Calculator")
    st.sidebar.header("Adjustable Parameters")

    # User Inputs
    initial_net_worth = st.sidebar.number_input("Initial Net Worth ($)", min_value=0, value=300000, step=10000)
    salary = st.sidebar.number_input("Annual Salary ($)", min_value=0, value=100000, step=1000)
    taxes = st.sidebar.number_input("Annual Taxes ($)", min_value=0, value=55000, step=500)
    savings_rate = st.sidebar.slider("Savings Rate (%)", min_value=0.0, max_value=100.0, value=70.0, step=0.5)
    savings_rate_growth = st.sidebar.slider("Savings Return (%)", min_value=0.0, max_value=10.0, value=2.0, step=0.1)
    base_investment_return = st.sidebar.slider("Base Investment Return (%)", min_value=0.0, max_value=100.0, value=5.0, step=5.0)
    investment_allocation = st.sidebar.slider("Current Investment Allocation (% in Stocks)", min_value=0.0, max_value=100.0, value=80.0, step=1.0)
    current_age = st.sidebar.number_input("Current Age", min_value=0, value=25, step=1)
    retirement_age = st.sidebar.number_input("Retirement Age", min_value=0, value=70, step=1)
    social_security = st.sidebar.number_input("Annual Social Security Benefit ($)", min_value=0, value=20000, step=1000)
    
    # Monthly Expenses
    home_expenses = st.sidebar.number_input("Home/Rent Expenses ($ per month)", min_value=0, value=1000, step=50)
    food_expenses = st.sidebar.number_input("Food Expenses ($ per month)", min_value=0, value=250, step=50)
    gas_expenses = st.sidebar.number_input("Gas Expenses ($ per month)", min_value=0, value=180, step=10)
    utilities_expenses = st.sidebar.number_input("Utilities ($ per month)", min_value=0, value=100, step=10)
    healthcare_expenses = st.sidebar.number_input("Healthcare Expenses ($ per month)", min_value=0, value=0, step=10)
    insurance_expenses = st.sidebar.number_input("Insurance ($ per month)", min_value=0, value=190, step=10)
    entertainment_expenses = st.sidebar.number_input("Entertainment ($ per month)", min_value=0, value=167, step=10)
    other_expenses = st.sidebar.number_input("Other Expenses ($ per month)", min_value=0, value=250, step=10)
    years = st.sidebar.slider("Number of Years", min_value=1, max_value=50, value=10, step=1)
    
    emergency_fund_target = st.sidebar.number_input("Emergency Fund Target ($)", min_value=0, value=5000, step=500)
    
    # Total Monthly Expenses
    total_monthly_expenses = (home_expenses + food_expenses + gas_expenses + utilities_expenses +
                              healthcare_expenses + insurance_expenses + entertainment_expenses + other_expenses)
    
    # Convert monthly expenses to annual
    total_annual_expenses = total_monthly_expenses * 12
    
    # Calculate Net Worth for different scenarios
    conservative_history = calculate_net_worth_scenario(initial_net_worth, base_investment_return * 0.70, investment_allocation, salary, savings_rate, savings_rate_growth, total_annual_expenses, taxes, years, emergency_fund_target=5000, retirement_age=retirement_age, current_age=current_age, social_security=social_security)
    moderate_history = calculate_net_worth_scenario(initial_net_worth, base_investment_return, investment_allocation, salary, savings_rate, savings_rate_growth, total_annual_expenses, taxes, years, emergency_fund_target=5000, retirement_age=retirement_age, current_age=current_age, social_security=social_security)
    risky_history = calculate_net_worth_scenario(initial_net_worth, base_investment_return * 1.3, investment_allocation, salary, savings_rate, savings_rate_growth, total_annual_expenses, taxes, years, emergency_fund_target=5000, retirement_age=retirement_age, current_age=current_age, social_security=social_security)

    # Display the final net worth from the moderate scenario
    final_moderate_net_worth = moderate_history[-1]
    st.metric(label="Final Net Worth (Moderate Strategy)", value=f"${final_moderate_net_worth:,.2f}")

    # Estimate annual spending based on the 4% rule
    annual_spending_4_percent_rule = final_moderate_net_worth * 0.04
    st.write(f"Estimated Annual Spending (4% Rule): ${annual_spending_4_percent_rule:,.2f}")

    # Create a DataFrame for net worth history
    net_worth_df = pd.DataFrame({
        'Year': np.arange(1, years + 1),
        'Conservative': conservative_history,
        'Moderate': moderate_history,
        'Risky': risky_history
    })

    # Display the DataFrame as a table
    st.write("### Projected Net Worth Over Time:")
    st.dataframe(net_worth_df.style.format({
        'Conservative': "${:,.2f}",
        'Moderate': "${:,.2f}",
        'Risky': "${:,.2f}"
    }))

    # Plot Net Worth History using Plotly as a line chart
    st.write("### Net Worth Growth Over Time:")
    fig = px.line(
        net_worth_df,
        x='Year',
        y=['Conservative', 'Moderate', 'Risky'],
        title='Net Worth Growth Over Time',
        labels={'value': 'Net Worth ($)', 'variable': 'Strategy'},
        markers=True  # Add markers for better visibility
    )
    
    # Update layout for a transparent background
    fig.update_layout(
        xaxis_title='Year',
        yaxis_title='Net Worth ($)',
        hovermode='x unified',
        plot_bgcolor='rgba(0,0,0,0)',  # Transparent background for the plot area
        paper_bgcolor='rgba(0,0,0,0)',  # Transparent paper background
        font=dict(size=12, color='white'), 
        title_font=dict(size=16, color='white'), 
        xaxis=dict(
            showgrid=True,  # Gridlines for better readability
            gridcolor='lightgrey',
            zeroline=True,  # Show zero line
            color='white',  # White axis labels
            showline=True,  # Show x-axis line
            linewidth=1,
            linecolor='white'
        ),
        yaxis=dict(
            showgrid=True,  # Gridlines for better readability
            gridcolor='lightgrey',
            zeroline=True,  # Show zero line
            color='white',  # White axis labels
            showline=True,  # Show y-axis line
            linewidth=1,
            linecolor='white',
            type='linear'
        )
    )
    
    # Update traces for different strategies
    fig.update_traces(
        line=dict(width=2),
        selector=dict(name='Conservative'),
        line_color='green',
        opacity=0.75  # Set opacity for transparency
    )
    fig.update_traces(
        line=dict(width=2),
        selector=dict(name='Moderate'),
        line_color='blue',
        opacity=0.75  # Set opacity for transparency
    )
    fig.update_traces(
        line=dict(width=2),
        selector=dict(name='Risky'),
        line_color='red',
        opacity=0.75  # Set opacity for transparency
    )
    
    st.plotly_chart(fig)

    # Monte Carlo Simulation
    st.write("### Monte Carlo Simulation of Final Net Worth")
    simulation_results = monte_carlo_simulation(initial_net_worth, base_investment_return, investment_allocation, salary, savings_rate, savings_rate_growth, total_annual_expenses, taxes, years, 5000, retirement_age, current_age, social_security)
    counts, bins = np.histogram(simulation_results, bins=100)

    st.write(f"Simulated {len(simulation_results)} scenarios.")
    st.write(f"Mean Final Net Worth: ${np.mean(simulation_results):,.2f}")
    st.write(f"Median Final Net Worth: ${np.median(simulation_results):,.2f}")
    st.write(f"5th Percentile: ${np.percentile(simulation_results, 5):,.2f}")
    st.write(f"95th Percentile: ${np.percentile(simulation_results, 95):,.2f}")

    # Plot Monte Carlo Simulation Results
    st.write("### Distribution of Final Net Worth from Monte Carlo Simulation")
    # Create a histogram with custom colors and bin size
    fig_monte_carlo = go.Figure(data=[go.Bar(
        x=bins[:-1],  # Bin start values
        y=counts,  # Bin counts
        marker=dict(
            color=counts,  # Use the bin counts to color the bars
            colorscale='Cividis',  # Use a colormap for multi-colored bins
            colorbar=dict(title='Frequency'),
            showscale=True
        ),
        opacity=0.75
    )])

    fig_monte_carlo.update_layout(
        title='Monte Carlo Simulation Results',
        xaxis_title='Final Net Worth ($)',
        yaxis_title='Frequency',
        plot_bgcolor='rgba(0,0,0,0)',  # Transparent background for the plot area
        paper_bgcolor='rgba(0,0,0,0)',  # Transparent paper background
        font=dict(size=12, color='white'),  # Black font for better contrast
        title_font=dict(size=16, color='white'),  # Black title font
        xaxis=dict(
            showgrid=True,
            gridcolor='lightgrey',
            zeroline=True,
            color='white',
            showline=True,
            linewidth=1,
            linecolor='white'
        ),
        yaxis=dict(
            showgrid=True,
            gridcolor='lightgrey',
            zeroline=True,
            color='white',
            showline=True,
            linewidth=1,
            linecolor='white'
        )
    )
    st.plotly_chart(fig_monte_carlo)

    # Goal-based optimization
    st.sidebar.subheader("Goal Optimization")
    target_net_worth = st.sidebar.number_input("Target Net Worth ($)", min_value=0, value=1000000, step=10000)
    max_years = st.sidebar.number_input("Maximum Years to Reach Goal", min_value=1, value=30, step=1)

    if st.sidebar.button("Optimize for Goal"):
        current_net_worth_history = calculate_net_worth_scenario(
            initial_net_worth, base_investment_return, investment_allocation, 
            salary, savings_rate, savings_rate_growth, total_annual_expenses, 
            taxes, years, emergency_fund_target, retirement_age, current_age, social_security
        )
        final_net_worth = current_net_worth_history[-1]
        
        st.write(f"Projected net worth with current savings rate: ${final_net_worth:,.2f}")
        st.write(f"Target net worth: ${target_net_worth:,.2f}")
        
        if final_net_worth >= target_net_worth:
            st.success(f"Your current savings rate of {savings_rate:.2f}% is sufficient to reach your goal!")
        else:
            optimal_savings_rate = optimize_for_goal(
                target_net_worth, max_years, 
                initial_net_worth, base_investment_return, investment_allocation, 
                salary, savings_rate, savings_rate_growth, total_annual_expenses, 
                taxes, years, emergency_fund_target, retirement_age, current_age, social_security
            )
            
            st.write(f"Current savings rate: {savings_rate:.2f}%")
            st.write(f"Optimal savings rate to reach your goal: {optimal_savings_rate:.2f}%")
            
            # Calculate the maximum possible savings rate for comparison
            max_possible_savings_rate = max(0, min(100, (salary - total_annual_expenses) / salary * 100))
            st.write(f"Maximum possible savings rate based on current income and expenses: {max_possible_savings_rate:.2f}%")
            
            if optimal_savings_rate >= max_possible_savings_rate:
                st.warning("The optimal savings rate is at or above the maximum possible rate given your current income and expenses. Consider adjusting your goal, timeline, or finding ways to increase income or reduce expenses.")
            elif optimal_savings_rate > max_possible_savings_rate * 0.9:
                st.warning("The optimal savings rate is very close to the maximum possible rate. This may be challenging to achieve and maintain.")
            else:
                st.success("The optimal savings rate appears achievable based on your current income and expenses.")

    # Retirement age optimization
    st.sidebar.subheader("Retirement Age Optimization")
    retirement_target = st.sidebar.number_input("Target Retirement Net Worth ($)", min_value=0, value=2000000, step=10000)
    max_retirement_age = st.sidebar.number_input("Maximum Retirement Age", min_value=current_age, value=70, step=1)

    if st.sidebar.button("Optimize Retirement Age"):
        current_net_worth_history = calculate_net_worth_scenario(
            initial_net_worth, base_investment_return, investment_allocation, 
            salary, savings_rate, savings_rate_growth, total_annual_expenses, 
            taxes, years, emergency_fund_target, retirement_age, current_age, social_security
        )
        final_net_worth = current_net_worth_history[-1]
        
        st.write(f"Projected net worth at current retirement age ({retirement_age}): ${final_net_worth:,.2f}")
        st.write(f"Target retirement net worth: ${retirement_target:,.2f}")
        
        if final_net_worth >= retirement_target:
            st.success(f"Your current retirement age of {retirement_age} is sufficient to reach your goal!")
        else:
            optimal_retirement_age = optimize_retirement_age(
                retirement_target, max_retirement_age, 
                initial_net_worth, base_investment_return, investment_allocation, 
                salary, savings_rate, savings_rate_growth, total_annual_expenses, 
                taxes, years, emergency_fund_target, retirement_age, current_age, social_security
            )
            
            st.info(f"Current retirement age: {retirement_age}")
            st.info(f"Optimal retirement age to reach your goal: {optimal_retirement_age}")
            
            if optimal_retirement_age >= max_retirement_age:
                st.warning("The optimal retirement age is at or above your specified maximum. Consider adjusting your goal, savings rate, or finding ways to increase income or reduce expenses.")
            elif optimal_retirement_age > retirement_age + 5:
                st.warning(f"The optimal retirement age is significantly later than your current plan. You may want to consider increasing your savings rate or adjusting your retirement goals.")
            else:
                st.success(f"Adjusting your retirement age from {retirement_age} to {optimal_retirement_age} should allow you to reach your target net worth!")

    # Tax optimization suggestions
    if st.sidebar.button("Get Tax Optimization Suggestions"):
        tax_suggestions = suggest_tax_optimization(salary, taxes)
        st.write("### Tax Optimization Suggestions")
        if tax_suggestions:
            for suggestion in tax_suggestions:
                st.info(suggestion)
        else:
            st.success("Based on your current tax rate, you're already in a good position. Keep up the good work!")

    # Investment allocation optimization
    st.sidebar.subheader("Investment Allocation Optimization")
    risk_tolerance = st.sidebar.slider("Risk Tolerance", 1, 10, 5)
    time_horizon = st.sidebar.number_input("Investment Time Horizon (years)", min_value=1, value=20, step=1)

    if st.sidebar.button("Optimize Investment Allocation"):
        current_allocation = {"Stocks": investment_allocation, "Bonds": 100 - investment_allocation}
        st.write("Current asset allocation:")
        st.info(f"Stocks: {current_allocation['Stocks']:.2f}%")
        st.info(f"Bonds: {current_allocation['Bonds']:.2f}%")
    
        optimal_allocation = optimize_investment_allocation(risk_tolerance, time_horizon, current_age, retirement_age)
    
        st.write("Suggested optimal asset allocation:")
        st.info(f"Stocks: {optimal_allocation['Stocks']:.2f}%")
        st.info(f"Bonds: {optimal_allocation['Bonds']:.2f}%")
    
        stock_difference = optimal_allocation["Stocks"] - current_allocation["Stocks"]
        if abs(stock_difference) <= 5:
            st.success("Your current asset allocation is close to the suggested optimal allocation!")
        else:
            if stock_difference > 0:
                st.warning(f"Consider increasing your stock allocation by {stock_difference:.2f}%")
            else:
                st.warning(f"Consider decreasing your stock allocation by {abs(stock_difference):.2f}%")
    
        st.write(f"This allocation is based on your risk tolerance ({risk_tolerance}/10) and time horizon ({time_horizon} years).")

    # Sensitivity Analysis
    if st.sidebar.button("Perform Sensitivity Analysis"):
        st.write("### Sensitivity Analysis")
        base_scenario = {
            "initial_net_worth": initial_net_worth,
            "investment_return": base_investment_return,
            "investment_allocation": investment_allocation,
            "salary": salary,
            "savings_rate": savings_rate,
            "savings_rate_growth": savings_rate_growth,
            "expenses": total_annual_expenses,
            "taxes": taxes,
            "years": years,
            "emergency_fund_target": emergency_fund_target,
            "retirement_age": retirement_age,
            "current_age": current_age,
            "social_security": social_security
        }
        parameter_ranges = {
            "investment_return": np.arange(1, 10, 0.5),
            "savings_rate": np.arange(10, 80, 5),
            "investment_allocation": np.arange(0, 100, 5)
        }
        sensitivity_results = perform_sensitivity_analysis(base_scenario, parameter_ranges)
        
        for param, results in sensitivity_results.items():
            fig = px.line(x=parameter_ranges[param], y=results, title=f"Sensitivity to {param}")
            fig.update_layout(xaxis_title=param, yaxis_title="Final Net Worth ($)")
            st.plotly_chart(fig)
        
        st.info("The sensitivity analysis shows how changes in key parameters affect your final net worth. Steeper lines indicate that the parameter has a larger impact on the outcome.")
        st.success("Use this information to focus on the factors that have the biggest influence on your financial future!")


if __name__ == "__main__":
    main()