import solara
import sympy as sp
import altair as alt
import pandas as pd
import numpy as np
import sympy as sp
from pathlib import Path
#
P1, P2, PT, k_on, k_off, kD = sp.symbols("P_1 P_2 P_T k_on k_off k_D", positive=True)
sol = sp.solve(
[
-2 * k_on * P1 * P1 + 2 * k_off * P2,
P1 + 2 * P2 - PT,
(k_off / k_on) - kD,
],
[P1, P2, k_on, k_off],
dict=True,
)
solve_for = [P1, P2]
inputs = [PT, kD]
lambdas = {s: sp.lambdify(inputs, sol[0][s]) for s in solve_for}
ld_total = sp.lambdify(inputs, sol[0][P1] + sol[0][P2])
def make_chart(df: pd.DataFrame, dark: bool) -> alt.Chart:
source = df.melt("PT", var_name="species", value_name="y")
# Create a selection that chooses the nearest point & selects based on x-value
nearest = alt.selection_point(nearest=True, on="pointerover",
fields=["PT"], empty=False)
# The basic line
line = alt.Chart(source).mark_line(interpolate="basis").encode(
x=alt.X("PT:Q", scale=alt.Scale(type="log"), title='Ratio PT/kD'),
y=alt.Y("y:Q", title='Fraction of total'),
color="species:N",
).properties(width="container")
# Draw points on the line, and highlight based on selection
points = line.mark_point().encode(
opacity=alt.condition(nearest, alt.value(1), alt.value(0))
).properties(width="container")
# Draw a rule at the location of the selection
rule_color = 'white' if dark else 'black'
rules = alt.Chart(source).transform_pivot(
"species",
value="y",
groupby=["PT"]
).mark_rule(color=rule_color).encode(
x="PT:Q",
opacity=alt.condition(nearest, alt.value(0.3), alt.value(0)),
tooltip=[alt.Tooltip(c, type="quantitative", format=".2f") for c in df.columns],
).add_params(nearest).properties(width="container")
# Put the five layers into a chart and bind the data
chart = alt.layer(
line, points, rules
).properties(
height=300
).configure(autosize='fit-x')
return chart
@solara.component
def Page():
solara.Style(Path('style.css'))
dark_effective = solara.lab.use_dark_effective()
if dark_effective is True:
alt.themes.enable("dark")
elif dark_effective is False:
alt.themes.enable("default")
PT = solara.use_reactive(10.)
kD = solara.use_reactive(1.)
vmin = solara.use_reactive(-1)
vmax = solara.use_reactive(3)
ans = {k: ld(PT.value, kD.value) for k, ld in lambdas.items()}
solara.Title('Dimerization Kinetics')
with solara.Card("Calculate concentrations from kD"):
with solara.GridFixed(columns=2):
with solara.Tooltip("Total protomer concentration"):
solara.InputFloat('PT', value=PT)
with solara.Tooltip("Dissociation constant"):
solara.InputFloat('kD', value=kD)
solara.Markdown(f"### Concentration monomer: {ans[P1]:.2f}")
solara.Markdown(f"### Concentration dimer: {ans[P2]:.2f}")
# create a vector of PT values ranging from 0.1 times kD to 1000 times kD
def update():
PT_values = np.logspace(vmin.value, vmax.value, endpoint=True, num=100)
ans = {k: ld(PT_values, 1) / ld_total(PT_values, 1) for k, ld in lambdas.items()}
# put the results in a dataframe, together with input PT values
df = pd.DataFrame(dict(PT=PT_values) | {k.name: v for k, v in ans.items()})
return make_chart(df, dark_effective)
chart = solara.use_memo(update, [vmin.value, vmax.value])
with solara.Card("Fraction monomer/dimer vs ratio over kD"):
with solara.Row():
with solara.Tooltip("X axis lower limit (log10)"):
solara.InputFloat('xmin', value=vmin)
with solara.Tooltip("X axis upper limit (log10)"):
solara.InputFloat('xmax', value=vmax)
solara.HTML(tag="div", style="height: 10px")
solara.FigureAltair(chart)