Py.Cafe

Phoebe: Relationship ML Explorer

DocsPricing
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# https://github.com/mixstam1821/Phoebe

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.model_selection import cross_val_score
from sklearn.inspection import partial_dependence
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (TabPanel,ColorBar, BasicTicker, PrintfTickFormatter, HoverTool,InlineStyleSheet,GlobalInlineStyleSheet,
    FileInput, Select, MultiSelect, Button, ColumnDataSource, Div,CustomJS,
    Tabs
)
from bokeh.plotting import figure
from bokeh.palettes import Viridis256

import base64
import io
from bokeh.transform import linear_cmap

curdoc().theme = 'dark_minimal'

# Try to import xgboost
try:
    from xgboost import XGBClassifier, XGBRegressor
    XGB_AVAILABLE = True
except ImportError:
    XGB_AVAILABLE = False



gstyle = GlobalInlineStyleSheet(css=""" html, body, .bk, .bk-root {background-color: #343838; margin: 0; padding: 0; height: 100%; color: white; font-family: 'Consolas', 'Courier New', monospace; } .bk { color: white; } .bk-input, .bk-btn, .bk-select, .bk-slider-title, .bk-headers, .bk-label, .bk-title, .bk-legend, .bk-axis-label { color: white !important; } .bk-input::placeholder { color: #aaaaaa !important; } """)
style2 = InlineStyleSheet(css=""" .bk-input { background-color: #1e1e1e; color: #d4d4d4; font-weight: 500; border: 1px solid #3c3c3c; border-radius: 5px; padding: 6px 10px; font-family: 'Consolas', 'Courier New', monospace; transition: all 0.2s ease; } /* Input Hover */ .bk-input:hover { background-color: #1e1e1e; color: #d4d4d4; font-weight: 500; border: 1.5px solid #ff3232;        /* Red border */ box-shadow: 0 0 9px 2px #ff3232cc;  /* Red glow */ border-radius: 5px; padding: 6px 10px; font-family: 'Consolas', 'Courier New', monospace; transition: all 0.2s ease; } /* Input Focus */ .bk-input:focus { background-color: #1e1e1e; color: #d4d4d4; font-weight: 500; border: 1.5px solid #ff3232; box-shadow: 0 0 11px 3px #ff3232dd; border-radius: 5px; padding: 6px 10px; font-family: 'Consolas', 'Courier New', monospace; transition: all 0.2s ease; } .bk-input:active { outline: none; background-color: #1e1e1e; color: #d4d4d4; font-weight: 500; border: 1.5px solid #ff3232; box-shadow: 0 0 14px 3px #ff3232; border-radius: 5px; padding: 6px 10px; font-family: 'Consolas', 'Courier New', monospace; transition: all 0.2s ease; } .bk-input:-webkit-autofill { background-color: #1e1e1e !important; color: #d4d4d4 !important; -webkit-box-shadow: 0 0 0px 1000px #1e1e1e inset !important; -webkit-text-fill-color: #d4d4d4 !important; } """)
button_style = InlineStyleSheet(css=""" .bk-btn { background-color: #46b4f9; color: #1e1e2e; font-weight: bold; border: 10px solid #46b4f9; border-radius: 6px; transform: rotate(0deg); box-shadow: none; transition: all 0.3s ease-in-out; } /* 🟦 Hover: #1e1e2e + rotate */ .bk-btn:hover { background-color: #1e1e2e; border-color: #1e1e2e; color: #46b4f9; transform: rotate(3deg); box-shadow: 0 0 15px 3px #46b4f9; } /* 🔴 Active (click hold): red + stronger rotate */ .bk-btn:active { background-color: red; border-color: red; transform: rotate(6deg); box-shadow: 0 0 15px 3px red; } """)

base_variables = """ :host { /* CSS Custom Properties for easy theming */ --primary-color: #8b5cf6; --secondary-color: #06b6d4; --background-color: #1f2937; --surface-color: #343838; --text-color: #f9fafb; --accent-color: #f59e0b; --danger-color: #ef4444; --success-color: #10b981; --border-color: #4b5563; --hover-color: #6366f1; background: none !important; } """
file_input_style = InlineStyleSheet(css=base_variables + """ :host input[type="file"] { background: var(--surface-color) !important; color: var(--text-color) !important; border: 2px dashed var(--border-color) !important; border-radius: 6px !important; padding: 20px !important; font-size: 14px !important; cursor: pointer !important; transition: all 0.2s ease !important; } :host input[type="file"]:hover { border-color: var(--primary-color) !important; background: rgba(139, 92, 246, 0.05) !important; } :host input[type="file"]::file-selector-button { background: var(--primary-color) !important; color: white !important; border: none !important; border-radius: 4px !important; padding: 8px 16px !important; margin-right: 12px !important; cursor: pointer !important; font-weight: 600 !important; } """)
fancy_div_style = InlineStyleSheet(css=""" :host { position: relative; background: #21233a; color: #fff; border-radius: 12px; padding: 18px 28px; text-align: center; overflow: hidden; box-shadow: 0 6px 10px rgba(197, 153, 10, 0.2); } :host::after { content: ''; position: absolute; top: 0; left: -80%; width: 200%; height: 100%; background: linear-gradient(120deg, transparent 40%, rgba(255, 252, 71, 0.416) 50%, transparent 60%); animation: shimmer 2.2s infinite; pointer-events: none; border-radius: inherit; } @keyframes shimmer { 0%   { left: -80%; } 100% { left: 100%; } } """)





# ---- Helper Functions ----
def parse_contents(contents, filename):
    try:
        decoded = base64.b64decode(contents)
        if filename.endswith('.csv'):
            return pd.read_csv(io.BytesIO(decoded))
        if filename.endswith('.xlsx') or filename.endswith('.xls'):
            return pd.read_excel(io.BytesIO(decoded))
        try:
            return pd.read_csv(io.BytesIO(decoded))
        except Exception:
            return pd.read_excel(io.BytesIO(decoded))
    except Exception as e:
        raise ValueError(f"Error parsing file: {str(e)}")

def is_classification(y, threshold=10):
    if y.dtype.kind in 'biu' and y.nunique() <= threshold:
        return True
    if y.dtype.name == 'category':
        return True
    if y.dtype == object:
        return True
    return False

def get_partial_dependence_plot(model, X, feature, y, is_clf):
    if not np.issubdtype(X[feature].dtype, np.number):
        return None
    try:
        pd_result = partial_dependence(model, X, [feature], kind="average")
        xs = pd_result['values'][0]
        ys = pd_result['average'][0]
        p = figure(height=350, width=550, title=f'Partial Dependence: {feature}',
                   x_axis_label=feature, y_axis_label='Prediction',background_fill_color="#343838",border_fill_color="#343838",)
        p.line(xs, ys, line_width=3, line_color="orange")
        return p
    except Exception as e:
        print(f"Error creating partial dependence plot for {feature}: {e}")
        return None

# ---- Bokeh UI Components ----
title = Div(
    text="""
    <span style="display:block;color:deepskyblue;font-size:44px;font-weight:bold;">Phoebe</span>
    <span style="display:block;color:orange;font-size:18px;margin-top:-14px;">Relationship ML Explorer</span>
    """,
    styles={'width': '180px', 'background-color': 'black', 'padding': '10px', 'border-radius': '10px'},
    stylesheets=[fancy_div_style],
)
file_input = FileInput(accept=".csv,.xls,.xlsx",    stylesheets=[file_input_style])
columns_select = MultiSelect(title="Select Input Variables", options=[], size=8,stylesheets=[style2])
target_select = Select(title="Select Target Variable", options=[],stylesheets=[style2])
model_options = [
    ("Random Forest", "Random Forest"),
    ("Logistic Regression", "Logistic Regression"),
    ("Linear Regression", "Linear Regression"),
]
if XGB_AVAILABLE:
    model_options += [("XGBoost", "XGBoost")]

model_select = Select(title="Model", options=[k for k, _ in model_options], value="Random Forest",stylesheets=[style2])
analyze_btn = Button(label="Analyze", button_type="primary", disabled=True,stylesheets=[button_style])

validation_div = Div(text="", styles={'font-size': '14px'})
feature_importance_src = ColumnDataSource(data=dict(features=[], importances=[]))
feature_importance_fig = figure(
    x_range=[], height=450, title="Feature Importances",
    toolbar_location=None, tools="",background_fill_color="#343838",border_fill_color="#343838",
)
ee=feature_importance_fig.vbar(
    x='features', top='importances', width=0.8, source=feature_importance_src, color = "deepskyblue", hover_color="orange", hover_line_color="red",
)
feature_importance_fig.xaxis.major_label_orientation = 1
# Add hover
hover = HoverTool(
    tooltips=[
        ("features", "@features"), ("importances", "@importances")
    ],
    mode='mouse',
    renderers=[ee]
)
feature_importance_fig.add_tools(hover)

correlation_src = ColumnDataSource(data=dict(x=[], y=[], colors=[], text=[]))
correlation_fig = figure(
    height=450, width=650, x_range=[], y_range=[],
    title="Correlation Matrix", tools="",background_fill_color="#343838",border_fill_color="#343838",
)
correlation_fig.xaxis.major_label_orientation = 0.9 
partial_dep_div = Div(text="<b>Partial Dependence Plots</b>")
partial_dep_tabs = Tabs(tabs=[])

state = {'df': None, 'filename': None, 'analyzed': False}

def file_uploaded(attr, old, new):
    try:
        if not file_input.value:
            validation_div.text = "<span style='color:red'>No file selected</span>"
            return
        filename = file_input.filename
        if not filename:
            filename = "uploaded_file.csv"
        df = parse_contents(file_input.value, filename)
        df = df.loc[:, ~df.columns.duplicated()]
        state['df'] = df
        state['filename'] = filename
        columns = list(df.columns)
        target_select.options = columns
        columns_select.options = columns
        analyze_btn.disabled = False
        validation_div.text = (
            f"<b>✓ Loaded file:</b> {filename}<br>"
            f"<b>Rows:</b> {df.shape[0]} <b>Columns:</b> {df.shape[1]}<br>"
            f"<b>Columns:</b> {', '.join(columns[:5])}"
            f"{'...' if len(columns) > 5 else ''}"
        )
    except Exception as e:
        analyze_btn.disabled = True
        validation_div.text = f"<span style='color:red'>Error loading file: {str(e)}</span>"

def filename_updated(attr, old, new):
    if file_input.value and file_input.filename:
        file_uploaded(attr, old, new)

file_input.on_change('value', file_uploaded)
file_input.on_change('filename', filename_updated)

def analyze():
    try:
        df = state['df']
        target = target_select.value
        inputs = columns_select.value
        model_name = model_select.value

        if df is None:
            validation_div.text = "<span style='color:red'>Please upload a file first.</span>"
            return
        if not target:
            validation_div.text = "<span style='color:red'>Please select a target variable.</span>"
            return
        if not inputs:
            validation_div.text = "<span style='color:red'>Please select input variables.</span>"
            return

        use_cols = [target] + inputs
        df_use = df[use_cols].dropna()
        if df_use.empty:
            validation_div.text = "<span style='color:red'>No data remaining after removing missing values.</span>"
            return
        y = df_use[target]
        X = df_use[inputs]
        X_numeric = X.copy()
        for col in X_numeric.columns:
            if X_numeric[col].dtype == object:
                numeric_col = pd.to_numeric(X_numeric[col], errors='coerce')
                if numeric_col.notna().sum() > len(numeric_col) * 0.5:
                    X_numeric[col] = numeric_col
                else:
                    X_numeric = X_numeric.drop(columns=[col])
        X_numeric = X_numeric.dropna(axis=1, how='all')
        if X_numeric.empty:
            validation_div.text = "<span style='color:red'>No valid numeric input variables found.</span>"
            return
        df_final = pd.concat([y, X_numeric], axis=1).dropna()
        if df_final.empty:
            validation_div.text = "<span style='color:red'>No data remaining after cleaning.</span>"
            return
        y_clean = df_final[target]
        X_clean = df_final[list(X_numeric.columns)]

        is_clf = is_classification(y_clean)
        # Model Selection
        if model_name == "Random Forest":
            if is_clf:
                y_enc = pd.factorize(y_clean)[0] if y_clean.dtype == object else y_clean.astype(int)
                model = RandomForestClassifier(n_estimators=100, random_state=42)
                score_type = "accuracy"
                score = cross_val_score(model, X_clean, y_enc, cv=5, scoring='accuracy').mean()
            else:
                y_enc = pd.to_numeric(y_clean, errors='coerce')
                if y_enc.isna().any():
                    validation_div.text = "<span style='color:red'>Target variable contains non-numeric values.</span>"
                    return
                model = RandomForestRegressor(n_estimators=100, random_state=42)
                score_type = "R²"
                score = cross_val_score(model, X_clean, y_enc, cv=5, scoring='r2').mean()
        elif model_name == "Logistic Regression":
            y_enc = pd.factorize(y_clean)[0] if y_clean.dtype == object else y_clean.astype(int)
            model = LogisticRegression(max_iter=1000)
            score_type = "accuracy"
            score = cross_val_score(model, X_clean, y_enc, cv=5, scoring='accuracy').mean()
        elif model_name == "Linear Regression":
            y_enc = pd.to_numeric(y_clean, errors='coerce')
            if y_enc.isna().any():
                validation_div.text = "<span style='color:red'>Target variable contains non-numeric values.</span>"
                return
            model = LinearRegression()
            score_type = "R²"
            score = cross_val_score(model, X_clean, y_enc, cv=5, scoring='r2').mean()
        elif model_name == "XGBoost" and XGB_AVAILABLE:
            if is_clf:
                y_enc = pd.factorize(y_clean)[0] if y_clean.dtype == object else y_clean.astype(int)
                model = XGBClassifier(n_estimators=100, random_state=42, use_label_encoder=False, eval_metric='logloss')
                score_type = "accuracy"
                score = cross_val_score(model, X_clean, y_enc, cv=5, scoring='accuracy').mean()
            else:
                y_enc = pd.to_numeric(y_clean, errors='coerce')
                if y_enc.isna().any():
                    validation_div.text = "<span style='color:red'>Target variable contains non-numeric values.</span>"
                    return
                model = XGBRegressor(n_estimators=100, random_state=42)
                score_type = "R²"
                score = cross_val_score(model, X_clean, y_enc, cv=5, scoring='r2').mean()
        else:
            validation_div.text = f"<span style='color:red'>Selected model '{model_name}' not available.</span>"
            return

        model.fit(X_clean, y_enc)
        importances = getattr(model, "feature_importances_", np.ones(X_clean.shape[1]))
        sorted_idx = np.argsort(importances)[::-1]
        # Get top numeric features for partial dependence
        top_features = []
        for i in sorted_idx[:3]:
            feat_name = X_clean.columns[i]
            if np.issubdtype(X_clean[feat_name].dtype, np.number):
                top_features.append(feat_name)
        # Feature importance chart
        feat_names = [X_clean.columns[i] for i in sorted_idx]
        feat_imps = importances[sorted_idx]
        feature_importance_src.data = dict(features=feat_names, importances=feat_imps)
        feature_importance_fig.x_range.factors = feat_names

        # Validation score
        validation_div.text = (
            f"<b>✓ Analysis Complete!</b><br>"
            f"<b>Model:</b> {model_name} {'Classifier' if is_clf else 'Regressor'}<br>"
            f"<b>Cross-validated {score_type}:</b> {score:.3f}<br>"
            f"<b>Training samples:</b> {len(X_clean)}"
        )
        if len(X_clean.columns) > 1:
            update_correlation_heatmap(X_clean, y_clean)
        else:
            correlation_fig.x_range.factors = []
            correlation_fig.y_range.factors = []
            correlation_fig.renderers = []
            correlation_fig.right = []
        # Partial dependence tabs
        tabs = []
        for feat in top_features:
            p = get_partial_dependence_plot(model, X_clean, feat, y_enc, is_clf)
            if p:
                tabs.append(TabPanel(child=p, title=feat))
        partial_dep_tabs.tabs = tabs
        state['analyzed'] = True
    except Exception as e:
        validation_div.text = f"<span style='color:red'>Analysis error: {str(e)}</span>"
        print(f"Analysis error: {e}")

analyze_btn.on_click(analyze)



def update_correlation_heatmap(X_clean, y_clean):
    # Build correlation DataFrame
    corr_data = pd.concat([X_clean, y_clean], axis=1)
    corr = corr_data.corr().fillna(0)
    corr_cols = corr.columns.tolist()
    corr_vals = corr.values

    # Prepare data for plotting
    n = len(corr_cols)
    xname = []
    yname = []
    value = []

    for i in range(n):
        for j in range(n):
            xname.append(corr_cols[i])
            yname.append(corr_cols[j])
            value.append(corr_vals[j, i])  # rows: y, cols: x

    # Build ColumnDataSource
    new_correlation_src = dict(
        x=xname,
        y=yname,
        value=value,
    )
    correlation_src.data = new_correlation_src

    # Set factors for axes
    correlation_fig.x_range.factors = corr_cols
    correlation_fig.y_range.factors = list(reversed(corr_cols))

    # Remove any old renderers
    correlation_fig.renderers = []

    # Create a mapper for color
    mapper = linear_cmap(
        field_name='value',
        palette=Viridis256,
        low=-1,
        high=1
    )

    # Draw rectangles
    r = correlation_fig.rect(
        x='x', y='y',
        width=1, height=1,
        source=correlation_src,
        fill_color=mapper,
        line_color=None
    )

    # Add hover
    hover = HoverTool(
        tooltips=[
            ("X", "@x"), ("Y", "@y"), ("Correlation", "@value{0.2f}")
        ],
        mode='mouse',
        renderers=[r]
    )
    correlation_fig.add_tools(hover)

    # Add colorbar
    color_bar = ColorBar(
        color_mapper=mapper['transform'],
        location=(0, 0),
        ticker=BasicTicker(desired_num_ticks=10),
        formatter=PrintfTickFormatter(format="%.2f"),
        label_standoff=8,
        title="Corr.",background_fill_color="#343838",
    )
    # Remove previous colorbars
    correlation_fig.right = []
    correlation_fig.add_layout(color_bar, 'right')




screenshot_btn = Button(label="Export Screenshot / PDF", button_type="success", stylesheets=[button_style])
screenshot_btn.js_on_click(CustomJS(code="window.print();"))


upload_panel = column(title, file_input, )
select_panel = row(column(model_select, target_select), columns_select, column(analyze_btn,screenshot_btn),validation_div)
output_panel = row(
    feature_importance_fig, 
    correlation_fig, 
    column(partial_dep_div, 
    partial_dep_tabs)
)

layout = column(row(upload_panel, select_panel), output_panel,stylesheets=[gstyle])

curdoc().add_root(layout )
curdoc().title = "Phoebe: Relationship ML Explorer"