Py.Cafe

skanderbm/

how-fucked-are-you

Dash Color Picker

DocsPricing
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import pandas as pd
# pd.options.plotting.backend = "plotly"
from dash import Dash, html, dcc, callback, Output, Input
import dash_bootstrap_components as dbc

add = lambda delta: lambda x: x+delta
multiply = lambda delta: lambda x: float(x)*(1+delta)

external_scripts = ['https://www.googletagmanager.com/gtag/js?id=G-Y13T4W6LNN',
                    "https://static.addtoany.com/menu/page.js"]

app = Dash(__name__,external_stylesheets=[dbc.themes.BOOTSTRAP],
                    external_scripts=external_scripts)

app.title = 'Retirement : How Fucked are you?'
server=app.server


old_young_image = 'https://media.istockphoto.com/id/523749933/photo/age-is-mind-over-matter.jpg?s=612x612&w=0&k=20&c=g5wSEodREftE2nE3oo1zjK1wpFMKWscb5N5X9oVFvjw='

def produce_card(title,image,fields):
    content = [html.H5(title, className="card-title"),]
    for id_, name, min_val,max_val,value,step in fields:
        content.extend([html.P([name,dcc.Input(id=id_, type='number', min=min_val, max=max_val, step=1, value = value)],className="card-text"),
                        ])
    image_ = dbc.Col(dbc.CardImg(src=image,className="img-fluid rounded-start"),className="col-md-4")
    card = dbc.Card([dbc.Row([image_, dbc.Col(dbc.CardBody(content),className="col-md-8")],
                     className="g-0 d-flex align-items-center")
                    ],className="mb-3",style={"maxWidth": "540px"})
    return card

ages_fields = [('current_age','Your age ',18,50,25,1),
               ('RETIREMENT_AGE','Retirement age ',50,70,60,1),
               ('DEAD','Planned death ',70,100,90,1)]



ages_card = produce_card('Your life stages',old_young_image,ages_fields)

pension_image = 'https://i0.wp.com/www.titanui.com/wp-content/uploads/2013/09/29/Locked-Money-Stacks-Vector.jpg'

pension_fields = [('current_pension',"Current pension pot ",0,3000,10,1),
                  ('pension_contrib',"Annual contribution ",0,200,5,1),
                  ('PENSION_CONTRIB_INCREASE',"Increase x% per year ",0,20,1,1),
                  ('PENSION_CONTRIB_CAP',"Until annual contrib cap of ",10,100,60,1)]


pension_card = produce_card("Your pension (in '000s)",pension_image,pension_fields)

savings_image = 'https://www.moneysavingexpert.com/content/dam/mse/editorial-image-library/guide-images/rhs-guide-images-/hero-banking-taxfree-savings.jpg'

savings_fields = [('savings',"Current savings ",0,3000,10,1),
                  ('savings_contrib',"Annual contribution ",0,1000,5,1),
                  ('SAVINGS_CONTRIB_GROWTH',"Increase x% per year ",0,20,1,1)]

savings_card = produce_card("Your savings (in '000s)",savings_image,savings_fields)

capital_image = 'https://images.moneycontrol.com/static-mcnews/2023/05/Healing-Space-54-Bouncebackability-markets-and-mental-health-bounce-back-770x433.jpg?impolicy=website&width=770&height=431'

capital_fields = [('CAPITAL_GROWTH',"Annual capital growth % ",0,10,4,1)]

capital_card = produce_card("Investment growth",capital_image,capital_fields)

expenses_image = 'https://www.topdoctors.co.uk/files/Image/large/5bd9bdd8-dbf8-41a5-a429-248025bbab96.png'

expenses_fields = [('ANNUAL_EXPENSE_RETIREMENT',"Expenses per year ",0,1000,30,1),
                  ('EXPENSE_GROWTH',"Increase x% per year ",0,20,1,1)]

expenses_card = produce_card("Your retirement expenses (in '000s)",expenses_image,expenses_fields)

rent_image = 'https://www.avail.co/wp-content/uploads/2021/08/8-tips-for-renting-out-a-house-for-the-first-time-min.jpg'

rent_fields = [('housing_expense_retirement',"Annual rent ",0,200,10,1),
                  ('rent_increase',"Increase x% per year ",0,10,0,1)]

rent_card = produce_card("Where will you live?",rent_image,rent_fields)


first_row = dbc.Row([ages_card,expenses_card,rent_card])
second_row = dbc.Row([pension_card,savings_card,capital_card])


app.layout = html.Div([
    html.H1(children='How f*cked are you?', style={'textAlign':'center'}),
    html.P('Saving for retirement is important. This simulator allows you to plan ahead and avoid misery', style={'textAlign':'center'}),
    # html.P(html.Iframe(src='assets/addtoany.html'), style={'textAlign':'center'}),
    first_row,
    second_row,
    html.Div([dbc.Row([dbc.Col(dcc.Graph(id='graph-content'))]),
              dbc.Row([dbc.Col(dcc.Graph(id='graph-misery'))])
             ])
])

@callback(
    [Output('graph-content', 'figure'),
     Output('graph-misery', 'figure')],
    Input('current_age', 'value'),
    Input('DEAD', 'value'),
    Input('current_pension', 'value'),
    Input('pension_contrib', 'value'),
    Input('savings', 'value'),
    Input('savings_contrib', 'value'),
    Input('RETIREMENT_AGE', 'value'),
    Input('PENSION_CONTRIB_INCREASE', 'value'),
    Input('PENSION_CONTRIB_CAP', 'value'),
    Input('SAVINGS_CONTRIB_GROWTH', 'value'),
    Input('CAPITAL_GROWTH', 'value'),
    Input('ANNUAL_EXPENSE_RETIREMENT', 'value'),
    Input('EXPENSE_GROWTH', 'value'),
    Input('housing_expense_retirement', 'value'),
    Input('rent_increase', 'value')
    
)
def update_graph(current_age,DEAD,current_pension,pension_contrib,savings,savings_contrib,RETIREMENT_AGE,
                PENSION_CONTRIB_INCREASE,PENSION_CONTRIB_CAP,SAVINGS_CONTRIB_GROWTH,CAPITAL_GROWTH,
                ANNUAL_EXPENSE_RETIREMENT,EXPENSE_GROWTH,housing_expense_retirement,rent_increase):
    
    args = dict()
    args['current_age'] = current_age
    args['DEAD'] = DEAD
    args['RETIREMENT_AGE'] = RETIREMENT_AGE
    
    args['ANNUAL_EXPENSE_RETIREMENT'] = ANNUAL_EXPENSE_RETIREMENT
    args['EXPENSE_GROWTH'] = EXPENSE_GROWTH/100
    
    args['housing_expense_retirement'] = housing_expense_retirement
    args['rent_increase'] = rent_increase/100
    
    args['current_pension'] = current_pension
    args['pension_contrib'] = pension_contrib
    args['PENSION_CONTRIB_INCREASE'] = PENSION_CONTRIB_INCREASE/100
    args['PENSION_CONTRIB_CAP'] = PENSION_CONTRIB_CAP
    
    args['savings'] = savings
    args['savings_contrib'] = savings_contrib
    args['SAVINGS_CONTRIB_GROWTH'] = SAVINGS_CONTRIB_GROWTH/100
    args['CAPITAL_GROWTH'] = CAPITAL_GROWTH/100
    
    
    data = process(args)
    fig = show(data)
    
    impact = sensitivity(args)
    fig = 'Hello'
    impact = 'Boo'
    return [fig,impact]



def process(args):
    # current_age,current_pension,pension_contrib,savings,savings_contrib,housing_expense_retirement,rent_increase,PENSION_CONTRIB_INCREASE,PENSION_CONTRIB_CAP,RETIREMENT_AGE,CAPITAL_GROWTH,SAVINGS_CONTRIB_GROWTH,ANNUAL_EXPENSE_RETIREMENT,EXPENSE_GROWTH,DEAD = args
    args = {k:v for k,v in args.items()}

    data = []

    misery = 0
    for age in range(args['current_age'],args['RETIREMENT_AGE']):
        args['current_pension'] *= 1+args['CAPITAL_GROWTH']
        args['pension_contrib'] = min(args['PENSION_CONTRIB_CAP'],args['pension_contrib']*(1+args['PENSION_CONTRIB_INCREASE']))
        args['current_pension'] += args['pension_contrib']

        args['savings'] *= 1+args['CAPITAL_GROWTH']
        args['savings_contrib'] *= 1+args['SAVINGS_CONTRIB_GROWTH']
        args['savings'] += args['savings_contrib']

        row = [age,args['current_pension'],args['savings'],misery]
        data.append(row)

    for age in range(args['RETIREMENT_AGE'],args['DEAD']):
        args['current_pension'] *= 1+args['CAPITAL_GROWTH']/2
        args['housing_expense_retirement'] *= 1+args['rent_increase']

        args['ANNUAL_EXPENSE_RETIREMENT'] *= 1+args['EXPENSE_GROWTH']
        expenses = args['ANNUAL_EXPENSE_RETIREMENT'] + args['housing_expense_retirement']

        pension_drawdown = min(args['current_pension'],expenses)
        remainder = expenses - pension_drawdown

        args['current_pension'] -= pension_drawdown
        args['savings'] *= 1+args['CAPITAL_GROWTH']/2
        args['savings'] -= remainder
        misery = max(0,-args['savings'])

        row = [age,args['current_pension'],args['savings'],misery]
        data.append(row)

    data = pd.DataFrame(data, columns = 'age pension savings misery'.split()).set_index('age')
    return data

def get_final(data):
    return data['savings pension'.split()].iloc[-1].sum()

def sensitivity(args,delta=0.01,fields=[('pension_contrib',multiply),
                         ('savings_contrib',multiply),
                         ('housing_expense_retirement',multiply),
                         ('rent_increase',add),
                         ('PENSION_CONTRIB_INCREASE',add),
                         ('CAPITAL_GROWTH',add),
                         ('SAVINGS_CONTRIB_GROWTH',multiply),
                         ('ANNUAL_EXPENSE_RETIREMENT',multiply),
                         ('EXPENSE_GROWTH',add)
                    ]):
    effect = dict()
    for field,operator in fields:
        new_args = {k:v for k,v in args.items()}
        new_args[field] = operator(delta)(args[field])
        plus_data = process(new_args)
        new_args[field] = operator(-delta)(args[field])
        minus_data = process(new_args)
        effect[field] =  int((get_final(plus_data) - get_final(minus_data))/2)
    effect = pd.DataFrame(effect.items(), columns = 'modified impact'.split()).sort_values('impact',ascending=False)
    fig = effect.set_index('modified').plot.barh(title='What if I changed something by 1% ?')
    return fig

def show(data):
    not_fucked = (data['misery'] > 0).sum() == 0

    fucked = None if not_fucked else data[data['misery'] > 0].index[0]

    title = 'Congratulations ! You made it to the end :-)' if not_fucked else f'You will be fucked at {fucked} :-('


    fig = data['pension savings misery'.split()].astype(int).plot(title=title)

    fig.update_yaxes(range=[0, data.sum(axis=1).max()], row=1, col=1)
    # fig.show()
    return fig



if __name__ == '__main__':
    
    app.run()