Py.Cafe

sylvie.bartusek/

pycafe-vizro-app

college-park-community-food-bank-map

DocsPricing
  • data_2024/
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Vizro is an open-source toolkit for creating modular data visualization applications.
# check out https://github.com/mckinsey/vizro for more info about Vizro
# and checkout https://vizro.readthedocs.io/en/stable/ for documentation.

import vizro.plotly.express as px
from vizro import Vizro
import vizro.models as vm
import pandas as pd

from urllib.request import urlopen
import json
with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:
    counties = json.load(response)

df = pd.read_csv('data_2024/county_data.csv')
colorscale = [
    'rgb(193, 193, 193)',
    'rgb(239,239,239)',
    'rgb(195, 196, 222)',
    'rgb(144,148,194)',
    'rgb(101,104,168)',
    'rgb(65, 53, 132)'
]

fig = px.choropleth(
        df, 
        geojson=counties, 
        locations='code', 
        color='NumInd',
        color_continuous_scale="Viridis",
        range_color=(0, 12),
        scope='usa'
                        #    labels={'unemp':'unemployment rate'}
    #     legend=dict(
    #         title=dict(
    #         text='Population by County'
    #     )
    # ),
    # title=dict(
    #   text='2024 Food Bank Visitors By County'
    # )
)

page = vm.Page(
    title="Vizro on PyCafe",
    layout=vm.Layout(grid=[[0, 1], [2, 2], [2, 2], [3, 3], [3, 3]], row_min_height="140px"),
    components=[
        vm.Card(
            text="""
                ### What is Vizro?
                An open-source toolkit for creating modular data visualization applications.
                
                Rapidly self-serve the assembly of customized dashboards in minutes - without the need for advanced coding or design experience - to create flexible and scalable, Python-enabled data visualization applications."""
        ),
        vm.Card(
            text="""
                ### Github

                Checkout Vizro's GitHub page for further information and release notes. Contributions are always welcome!""",
            href="https://github.com/mckinsey/vizro",
        ),
        # vm.Graph(id="scatter_chart", figure=px.scatter(df, x="sepal_length", y="petal_width", color="species")),
        vm.Graph(id="hist_chart", figure=px.histogram(df, x="county", color="NumInd")),
        vm.Graph(id="map", figure=fig)
    ],
    controls=[vm.Filter(column="species"), vm.Filter(column="petal_length"), vm.Filter(column="sepal_width")],
)

dashboard = vm.Dashboard(pages=[page])
Vizro().build(dashboard).run()