Py.Cafe

vizro-official/

vizro-iris-visualizations

Vizro Interactive Iris Dataset Visualizations

DocsPricing
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Vizro is an open-source toolkit for creating modular data visualization applications.
# check out https://github.com/mckinsey/vizro for more info about Vizro
# and checkout https://vizro.readthedocs.io/en/stable/ for documentation.

import vizro.plotly.express as px
from vizro import Vizro
import vizro.models as vm

df = px.data.iris()

page = vm.Page(
    title="Vizro on PyCafe",
    layout=vm.Layout(grid=[[0, 1], [2, 2], [2, 2], [3, 3], [3, 3]], row_min_height="140px"),
    components=[
        vm.Card(
            text="""
                ### What is Vizro?
                An open-source toolkit for creating modular data visualization applications.
                
                Rapidly self-serve the assembly of customized dashboards in minutes - without the need for advanced coding or design experience - to create flexible and scalable, Python-enabled data visualization applications."""
        ),
        vm.Card(
            text="""
                ### Github

                Checkout Vizro's GitHub page for further information and release notes. Contributions are always welcome!""",
            href="https://github.com/mckinsey/vizro",
        ),
        vm.Graph(id="scatter_chart", figure=px.scatter(df, x="sepal_length", y="petal_width", color="species")),
        vm.Graph(id="hist_chart", figure=px.histogram(df, x="sepal_width", color="species")),
    ],
    controls=[vm.Filter(column="species"), vm.Filter(column="petal_length"), vm.Filter(column="sepal_width")],
)

dashboard = vm.Dashboard(pages=[page])
Vizro().build(dashboard).run()