Py.Cafe

dash.mantine.components/

public-saas-companies-data-explorer

Plotly's Figure Friday Challenge 20024 week 52: Public SaaS Companies Data Explorer

DocsPricing
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Plotly's Figure Friday challenge. See more info here: https://community.plotly.com/t/figure-friday-2024-week-52/89593

import pandas as pd
from dash import Dash, dcc, Input, Output, State, callback, _dash_renderer, ctx
import dash_mantine_components as dmc
import dash_ag_grid as dag
import plotly.express as px

_dash_renderer._set_react_version("18.2.0")
dmc.add_figure_templates(default="mantine_dark")

app = Dash(external_stylesheets=dmc.styles.ALL)

about = dcc.Markdown("""
This app was last updated in December 2024 and uses data from [PublicSaaSCompanies.com](https://publicsaascompanies.com/), a free database of 170+ SaaS businesses listed on the NYSE and NASDAQ. For the latest data, visit their website.

About "Rule of 40%":
 - Rule of 40 is a convenient way to determine if a SaaS company is balancing the growth rate and the cost of achieving that growth rate. Historically, companies with a Rule of 40 equal to or greater than 40% will experience high enterprise value multiples to revenue.

Created for Plotly's **Figure Friday Challenge**, this app showcases interactive data visualizations of SaaS companies. Explore the dataset and join the discussion on the [Plotly Community Forum](https://community.plotly.com/t/figure-friday-2024-week-52/89593).

Built with **Dash Mantine Components** and **Dash AG Grid**, this Dash app is written in just ~200 lines of Python code. View the source on [GitHub](https://gist.github.com/AnnMarieW/6934d9fa27f9dc65b74c7e77b4fd0b8a)
""", style={"width": 450})

df = pd.read_csv('https://raw.githubusercontent.com/plotly/Figure-Friday/main/2024/week-52/SaaS-businesses-NYSE-NASDAQ.csv')
df1 = df.copy()  # use the copy for cleaned data

# Function to clean a single value
def clean_value(value):
    if isinstance(value, str):
        value = value.replace('$', '').replace('%', '').replace(',', '')
    return pd.to_numeric(value, errors='coerce')

# Remove $ and % formating from numeric columns so sort and filters work correctly in the grid
for column in df.columns:
    if df1[column].apply(lambda x: isinstance(x, str) and (x.startswith('$') or x.endswith('%'))).any():
        df1[column] = df1[column].apply(clean_value)

# add rule of 40 https://www.saasmetricsboard.com/rule-of-40
df1["Rule of 40%"] = (df1["YoY Growth%"] + df1["EBITDA Margin"]).round(2)
df["Rule of 40%"] = df1["Rule of 40%"].apply(lambda x: f"{x:.2f}%")


graph_columns = ['Company', 'Market Cap',  'Annualized Revenue', 'YoY Growth%', 'Revenue Multiple',
       'Annualized EBITDA', 'YoY Change in EBITDA%', 'EBITDA Margin', 'Rule of 40%', 'Annualized Net Income',
       'YoY Change in Net Income%', 'Net Income Margin', 'Cash and Short Term Investments',
       'YoY Change in Cash and Short Term Investments%', 'Employee Count (estimate)',
        'Annual Revenue per Employee (estimate)', 'Stock Price']

ag_grid = dag.AgGrid(
    id="grid",
    rowData=df1.to_dict("records"),
    columnDefs=[{"field": "Company", "pinned": True}, {"field": "Last Quarter Filed"}] +
        [{"field": i, 'type': 'rightAligned'} for i in graph_columns if i != "Company"],
    columnSize="autoSize",
    defaultColDef={"filter": True},
    dashGridOptions={"animateRows": False, "rowSelection":'single'},
    className="ag-theme-alpine-dark"
)

control_panel = dmc.Card([
    dmc.Select(
        label="Select Y Axis",
        data=graph_columns,
        value="Market Cap",
        id="y"
    ),
    dmc.Select(
        label="Select X Axis",
        data=graph_columns,
        value="Company",
        id="x",
        mt="lg"
    ),
    dmc.Text("Click column header to sort", mt="md", size="sm")
], w=160)

header = dmc.Group([
    dmc.Title("Public SaaS Explorer", c="blue"),
    dmc.HoverCard(
        shadow="lg",
        children=[
            dmc.HoverCardTarget(dmc.Button("About",variant="outline")),
            dmc.HoverCardDropdown(about),
        ],
    )
], justify="space-between")

layout = dmc.Stack([
    header,
    ag_grid,
    dmc.Group([control_panel, dmc.Card(dcc.Graph(id="graph" ), mt=0, withBorder=True, style={"flex":1})]),
    dmc.Box(id="details"),
], p="lg")

app.layout = dmc.MantineProvider(layout, forceColorScheme="dark")


@callback(
    Output("graph", "figure"),
    Input("grid", "virtualRowData"),
    Input("x", "value"),
    Input("y", "value"),
    State("grid", "columnState")
)
def update_figure(data, x, y, columnState):
    if not data:
        return {}
    dff = pd.DataFrame(data)
    sorted_by = next((c["colId"] for c in columnState if c.get("sort")), "Company") if columnState else "Company"
    title = f"{y} by {x} (Sorted by: {sorted_by})" if x == "Company" else f"{y} vs {x}"
    return px.scatter(dff, x=x, y=y, title=title, hover_data=[y, x, sorted_by, "Rule of 40%"], hover_name="Company")


@callback(
    Output("grid", "columnDefs"),
    Input("x", "value"),
    Input("y", "value"),
    State("grid", "columnDefs")
)
def update_grid_style(x,y, columnDefs):
    for c in columnDefs:
        if c["field"] in [x,y]:
            c["cellStyle"] =  {'background-color': 'var(--ag-selected-row-background-color)'}
        else:
            c["cellStyle"] = {'background-color': 'unset'}
    return columnDefs


def StatsGrid(data): # creates the stats cards
    stats = []
    for stat in data:
        stats.append(
            dmc.Paper(
                [
                    dmc.Group(
                        [dmc.Text(stat['title'], c="dimmed", tt="uppercase", fw=700)],
                        justify="space-between"
                    ),
                    dmc.Group([dmc.Text(stat['value'], size="lg", fw=700)], gap="xs"),
                    dmc.Group(
                        [
                            dmc.Text(f"{stat['diff']}%", size="xs"),
                            dmc.Text("YoY change", size="xs", c="dimmed")
                        ],
                        c="teal" if stat['diff'] > 0 else "red",
                        fw=500, gap=1,
                    )
                ],
                withBorder=True,
                p="xs"
            )
        )
    return dmc.SimpleGrid(children=stats, cols={"base": 1, "xs": 2, "md": 4})

@callback(
    Output("details", "children"),
    Output("grid", "selectedRows"),
    Input("graph", "clickData"),
    Input("grid", "selectedRows"),
    prevent_initial_call=True,
)
def update_detail_cards(clickData, selectedRows):
    if ctx.triggered_id == "graph":
        if not clickData:
            return "", selectedRows
        company=clickData["points"][0]["hovertext"]
        selectedRows= df1[df1["Company"] == company].to_dict("records")
    if ctx.triggered_id == "grid":
        if not selectedRows:
            return "", selectedRows
        company=selectedRows[0]["Company"]

    dff = df[df["Company"] == company].iloc[0]  #formated
    dff1=  df1[df1["Company"] == company].iloc[0] #numeric
    data = [
        {'title': 'Revenue',  'value': dff["Annualized Revenue"], 'diff': dff1["YoY Growth%"]},
        {'title': 'EBITDA',  'value': dff["Annualized EBITDA"], 'diff': dff1["YoY Change in EBITDA%"]},
        {'title': 'Net Income', 'value': dff["Annualized Net Income"], 'diff': dff1["YoY Change in Net Income%"]},
        {'title': 'Cash', 'value': dff["Cash and Short Term Investments"], 'diff': dff1["YoY Change in Cash and Short Term Investments%"]},
    ]

    selected_company_stats = dmc.Box([
        dmc.Title(dff["Company"], order=3),
        dmc.Text(f"Ticker: {dff['Ticker']}"),
        dmc.Text(f"Products: {dff['Product Description']}"),
        dmc.Text(f"Headquarters: {dff['Headquarters']}"),
        dmc.Text(f"Founded in {dff['Year Founded']}, IPO in  {dff['IPO Year']}"),
        dmc.Anchor("Website", href=dff['Company Website']),
        dmc.Anchor("2023 10-K Filing", href=dff['2023 10-K Filing'], pl="lg"),
    ])
    return dmc.Card([
        dmc.Group([
            dmc.Title(f"Selected company: {dff['Company']}", order=3),
            dmc.HoverCard([
                    dmc.HoverCardTarget(dmc.ActionIcon("?")),
                    dmc.HoverCardDropdown(selected_company_stats),
            ])
        ], justify="center"),
        StatsGrid(data)
    ], withBorder=True), selectedRows


if __name__ == "__main__":
    app.run(debug=True)