Py.Cafe

jorge-santos/

interactive-sp500-visualization

Interactive S&P 500 Visualization

DocsPricing
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# check out https://solara.dev/ for documentation
# or https://github.com/widgetti/solara/
# And check out https://py.cafe/maartenbreddels for more examples
import solara

# reactive variables will trigger a component rerender
# when changed.
# When you change the default (now 0), hit the embedded browser
# refresh button to reset the state
clicks = solara.reactive(0)


@solara.component
def Page():
    print("The component render function gets called")
    # change this code, and see the output refresh
    color = "green"
    if clicks.value >= 5:
        color = "red"

    def increment():
        clicks.value += 1
        print("clicks", clicks)  # noqa

    solara.Button(label=f"Clicked: {clicks}", on_click=increment, color=color)


# Solara also supports ipywidgets
# remove the Page component and assign an ipywidget to
# the page variable, e.g.
# page = mywidget
from great_tables import GT
from great_tables.data import sp500

# Define the start and end dates for the data range
start_date = "2010-06-07"
end_date = "2010-06-14"

# Filter sp500 using Pandas to dates between `start_date` and `end_date`
sp500_mini = sp500[(sp500["date"] >= start_date) & (sp500["date"] <= end_date)]

# Create a display table based on the `sp500_mini` table data
(
    GT(sp500_mini)
    .tab_header(title="S&P 500", subtitle=f"{start_date} to {end_date}")
    .fmt_currency(columns=["open", "high", "low", "close"])
    .fmt_date(columns="date", date_style="wd_m_day_year")
    .fmt_number(columns="volume", compact=True)
    .cols_hide(columns="adj_close")
)