Py.Cafe

marie-anne/

2025-figurefriday-w11

Failed experiment with ChatGPT

DocsPricing
  • app.py
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 17 16:49:24 2025

@author: win11
"""

from dash import Dash, html, Output, Input, dcc, callback_context
import dash_leaflet as dl
import pandas as pd
import dash_bootstrap_components as dbc
import plotly.express as px
import dash_ag_grid as dag
import re

dbc_css = "https://cdn.jsdelivr.net/gh/AnnMarieW/dash-bootstrap-templates/dbc.min.css"

# Load data
df = pd.read_csv('https://raw.githubusercontent.com/plotly/Figure-Friday/refs/heads/main/2025/week-11/us-hurricanes.csv')
df_states = pd.read_csv('https://raw.githubusercontent.com/jasonong/List-of-US-States/refs/heads/master/states.csv')

# Convert abbreviations to full state names
states_dict = pd.Series(df_states.State.values, index=df_states.Abbreviation).to_dict()

# Fix month issues
month_corrections = {"Sp-Oc": "Sep", "Jl-Au": "Jul"}
df["month"] = df["month"].replace(month_corrections)
df["year_month"] = pd.to_datetime(df["year"].astype(str) + "-" + df["month"], format="%Y-%b")

df["year"] = pd.to_numeric(df["year"], errors="coerce")
df = df.dropna().astype({"year": "int"})
df["category"] = pd.to_numeric(df["category"], errors="coerce").astype("Int64")

# Define state coordinates
state_coords = {
    "AL": [32.806671, -86.791130], "AK": [61.370716, -152.404419], "AZ": [33.729759, -111.431221],
    "AR": [34.969704, -92.373123], "CA": [36.116203, -119.681564], "CO": [39.059811, -105.311104],
    "CT": [41.597782, -72.755371], "DE": [39.318523, -75.507141], "FL": [27.766279, -81.686783],
    "GA": [33.040619, -83.643074], "HI": [20.796179, -156.331924], "ID": [44.240459, -114.478828],
    "IL": [40.349457, -88.986137], "IN": [39.849426, -86.258278], "IA": [42.011539, -93.210526],
    "KS": [38.526600, -96.726486], "KY": [37.668140, -84.670067], "LA": [31.169546, -91.867805],
    "ME": [44.693947, -69.381927], "MD": [39.063946, -76.802101], "MA": [42.230171, -71.530106],
    "MI": [43.326618, -84.536095], "MN": [45.694454, -93.900192], "MS": [32.741646, -89.678696],
    "MO": [38.456085, -92.288368], "MT": [46.921925, -110.454353], "NE": [41.125370, -98.268082],
    "NV": [38.313515, -117.055374], "NH": [43.452492, -71.563896], "NJ": [40.298904, -74.521011],
    "NM": [34.840515, -106.248482], "NY": [42.165726, -74.948051], "NC": [35.630066, -79.806419],
    "ND": [47.528912, -99.784012], "OH": [40.388783, -82.764915], "OK": [35.565342, -96.928917],
    "OR": [44.572021, -122.070938], "PA": [40.590752, -77.209755], "RI": [41.680893, -71.511780],
    "SC": [33.856892, -80.945007], "SD": [44.299782, -99.438828], "TN": [35.747845, -86.692345],
    "TX": [31.054487, -97.563461], "UT": [40.150032, -111.862434], "VT": [44.045876, -72.710686],
    "VA": [37.769337, -78.169968], "WA": [47.400902, -121.490494], "WV": [38.491226, -80.954456],
    "WI": [44.268543, -89.616508], "WY": [42.755966, -107.302490]
}


#columndefs for popup in leaflet popup
columnDefs = [
    {"field": "year", "sortable": True },
    {"field": "month"},
    {"field": "category",
     'cellStyle': {
          # Set of rules
          "styleConditions": [
              {
                  "condition": "params.value == 5",
                  "style": {"backgroundColor": "rgba(211,84,0,1)"},
              },
              {
                  "condition": "params.value == 4",
                  "style": {"backgroundColor": "rgba(211,84,0,.8)"},
              },
              {
                  "condition": "params.value == 3",
                  "style": {"backgroundColor": "rgba(211,84,0,.6)"},
              },
              {
                  "condition": "params.value == 2",
                  "style": {"backgroundColor": "rgba(211,84,0,.4)"},
              },
              {
                  "condition": "params.value == 1",
                  "style": {"backgroundColor": "rgba(211,84,0,.2)"},
              },
              
          ],
          # Default style if no rules apply
          "defaultStyle": {"backgroundColor": "white"},
      }},
    {"field": "central-pressure-(mb)"},
    {"field": "max-wind-(kt)"},
]




# Create a dictionary to track the highest category per state
state_max_category = {}

for entry in df["states-affected-and-category-by-states"]:
    for state_abbr, category in re.findall(r"\b([A-Z]{2})\b[^\d]*(\d+)", entry):
        category = int(category)
        if state_abbr in state_coords:
            if state_abbr not in state_max_category or category > state_max_category[state_abbr]:
                state_max_category[state_abbr] = category




# Create unique markers
storm_markers = [
    dl.Marker(
        position=state_coords[state],
        id=f"marker-{state}",
        #children=dl.Tooltip(f"{states_dict[state]}: Category {category}"),
        children=dl.Tooltip(f"{states_dict[state]}"),
        n_clicks=0  # Initialize
    ) for state, category in state_max_category.items()
]

# Dash app
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP, dbc.icons.FONT_AWESOME, dbc_css])
app.layout = dbc.Container([
    dbc.Row([
        dbc.Col(dl.Map(center=[41, -85], zoom=4, children=[
            dl.TileLayer(),
            dl.LayerGroup(id="storm-markers", children=storm_markers)
        ], style={'height': '50vh'}), width=5),
        
        dbc.Col(html.Div(id='state_information', children="Click a marker for hurricane details"))
    ])
])

# Callback to update state information on marker click
@app.callback(
    Output("state_information", "children"),
    [Input(f"marker-{state}", "n_clicks") for state in state_max_category]
)
def update_state_info(*args):
    ctx = callback_context
    if not ctx.triggered:
        return "Click a marker for hurricane details"
    
    clicked_id = ctx.triggered[0]["prop_id"].split(".")[0]
    state_abbr = clicked_id.split("-")[-1]

    dff = df[df["states-affected-and-category-by-states"].str.contains(state_abbr)].sort_values("year", ascending=False)

    fig = px.scatter(dff, x="year_month", y="category", title=f"{states_dict[state_abbr]} Hurricane Trends")
    fig.update_yaxes(range=[0, 6])

    return html.Div([
        html.H4(f"{states_dict[state_abbr]} Hurricane Information"),
        html.Div(dcc.Graph(figure=fig)),
        html.P(""),
        html.Div(dag.AgGrid(
        id="column-definitions-basic",
        rowData=dff.to_dict("records"),
        defaultColDef={"filter": True},
        columnDefs=columnDefs,
        columnSize="sizeToFit",
        dashGridOptions={"animateRows": False}
    )),
    ])

if __name__ == '__main__':
    app.run(debug=True)