Py.Cafe

marie-anne/

2025-w2-figurefriday

A way to browse the data of plasticlist.org, no conclusions. One fixed card to start cardgrid. Not optimally styled.

DocsPricing
  • app.py
  • chemicals.csv
  • requirements.txt
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import pandas as pd
from dash import Dash, html, dcc, Input, Output, callback
import dash_bootstrap_components as dbc
import numpy as np
import plotly.express as px


df = pd.read_csv("https://raw.githubusercontent.com/plotly/Figure-Friday/refs/heads/main/2025/week-2/samples.tsv",  sep='\t')

#replace blinded name "Tablet" with "Tablets" in blinded_name
#replace blinded name "Protein Bar" with "Protein bar" in blinded_name

df.loc[df['blinded_name'] == 'Tablet', 'blinded_name'] = 'Tablets'
df.loc[df['blinded_name'] == 'Protein Bar', 'blinded_name'] = 'Protein bar'
#may some grouping/dropdown thing
df_chemicals = pd.read_csv("chemicals.csv")



#distinct blind_names = 117, samples = 618
#blind name in percentile, like fish percentile scores for some of the ng/g stats
#percentile nanogram per gram columns are:
percentile_cols = [col for col in df.columns if 'percentile' in col and '_g' in col and 'equivalents' not in col]

#start new df with non-percentile columns to use
df_data = df[['id','product_id', 'product', 'blinded_name']].copy()






#append percentile for ng/gram to dataframe
for x in percentile_cols:
    df_data[x] = df[x].apply(lambda x: x if x in ['<LOQ', 'NO RESULT']
                             else ('Q4' if int(x) > 75 
                             else ('Q3' if int(x) >50
                             else ('Q2' if int(x) >25 
                             else ('Q1' if int(x) >= 0 
                             else 'Error'
                                   )))))


#convert values in columns to something to use in a visual

def convert_percentiles_into_dict(a):
    
    #input column, output dict with countvalues
    #inititialize empty dict

    count_sample_output = {'<LOQ': 0, 'Q1': 0, 'Q2': 0,'Q3':0, 'Q4':0}
    #count
    count_sample_output['Q1'] = int(a.value_counts().get('Q1', 0))
    count_sample_output['Q2'] = int(a.value_counts().get('Q2', 0))
    count_sample_output['Q3'] = int(a.value_counts().get('Q3', 0))
    count_sample_output['Q4'] = int(a.value_counts().get('Q4', 0))
    count_sample_output['<LOQ'] = int(a.value_counts().get('<LOQ', 0))
    
    
    return count_sample_output

def create_productlist_fromcol(a):
    print(a.unique())
    productlist = list(a.unique())
    
    return productlist



#number of samples per blinded_name and number of products tested and number of samples tested
#dict with summary of LOQ and P values

df_grouped_blinded_names = df_data.groupby(['blinded_name']).agg(
        
    number_of_samples = pd.NamedAgg('id', 'count'),
    number_of_different_products=pd.NamedAgg(column="product_id", aggfunc=lambda x: x.nunique()),
    productlist = pd.NamedAgg(column="product", aggfunc=lambda x: ', '.join(x.unique())),
    DEHP_results = pd.NamedAgg(column="DEHP_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)), 
    DBP_results = pd.NamedAgg(column="DBP_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    BBP_results = pd.NamedAgg(column="BBP_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DINP_results = pd.NamedAgg(column="DINP_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DIDP_results = pd.NamedAgg(column="DIDP_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DEP_results = pd.NamedAgg(column="DEP_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DMP_results = pd.NamedAgg(column="DMP_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DIBP_results = pd.NamedAgg(column="DIBP_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DNHP_results = pd.NamedAgg(column="DNHP_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DCHP_results = pd.NamedAgg(column="DCHP_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DNOP_results = pd.NamedAgg(column="DNOP_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    BPA_results = pd.NamedAgg(column="BPA_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    BPS_results = pd.NamedAgg(column="BPS_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    BPF_results = pd.NamedAgg(column="BPF_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DEHT_results = pd.NamedAgg(column="DEHT_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DEHA_results = pd.NamedAgg(column="DEHA_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DINCH_results = pd.NamedAgg(column="DINCH_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    DIDA_results = pd.NamedAgg(column="DIDA_percentile_ng_g", aggfunc=lambda x: convert_percentiles_into_dict(x)),
    
    
    ).reset_index()


#create categorical barchart (categories is LOQ, P's)



def create_productlist_card(selected_food_group):
    
    
    productlist = str(df_grouped_blinded_names.loc[df_grouped_blinded_names['blinded_name']==selected_food_group]['productlist'].item()).split(',')  
   #print(productlist)
    
    listChildren = []
    
    for x in productlist:
        listChildren.append(dbc.ListGroupItem(x))
        

    
    productlist_card = dbc.Col(
       dbc.Card([   html.P('Disclaimer: this app offers a way to look at the data collected and analysed by plasticlist.org. Visuals are based on percentiles nanogram/gram. ChatGPT offered me 5 free tweet length descriptions for a chemical.',style={"fontWeight":"bold","fontSize":"11px"}), 
                    html.P('Do not draw any conclusions from here, go to plasticlist.org to read all about the research.',style={"fontWeight":"bold","fontSize":"11px"}),
                    html.A("Plasticlist.org", href='https://plastlist.org', target="_blank",style={"fontWeight":"bold","fontSize":"11px"}),
                    html.P("PlasticList. 'Data on Plastic Chemicals in Bay Area Foods'. plasticlist.org. Accessed Jan 10, 2025.",style={"fontWeight":"bold","fontSize":"11px"}),
                    html.H3("Productlist:", style={"marginTop":"1rem"}),
                    dbc.ListGroup(id = "productlist", children = listChildren, flush=True, style={"fontSize":"10px"})],
                    ), className='col-lg-3 col-md-6 col-sm-12'
       )
    
    
    return productlist_card
    
    

def create_chemical_card(dfin, food_group, chemical):
    
    #get description if available
    desc=df_chemicals.loc[df_chemicals['Chemical'] == chemical]['Description'].item() 
    if len(str(desc)) == 0:
        desc = ''
    
    
    #locate datadict, when are you going to remember to add .item()
    colname = chemical + '_results'
    d=dfin.loc[dfin['blinded_name'] == food_group][colname].item()   
    #colorset for results
    color_map = {'<LOQ':'darkgrey','Q1':'#F4E5CC','Q2':'#eacb99','Q3': '#e0b166','Q4':'#d69732'}
    #extract x en y from dict
    x_vals = list(d.keys())
    y_vals = list(d.values()) 
    #ymax equals number of samples for blinded name
    y_max=dfin.loc[dfin['blinded_name'] == food_group]['number_of_samples'].item()  
    
    fig = px.bar(x=x_vals, y=y_vals, color=x_vals, color_discrete_map = color_map)
    fig.update_layout(showlegend=False,
                      margin=dict(l=10, r=10, t=10, b=10),
                      xaxis=dict(
    title=dict(
        text="Result"
    )
),
yaxis=dict(
    title=None
),)
    fig.update_yaxes(range=[0,y_max+1])

    
    card_chemical = dbc.Col(
       dbc.Card([   html.H3(chemical),
                    html.P(desc, style={"font-size": "11px"}),
                    dcc.Graph(id= str(chemical)+"_plot", figure = fig, style={'height':'350px'})],
                    ), className='col-lg-3 col-md-6 col-sm-12'
       )
  
    return card_chemical


def bar_chart_grid(dfin, selected_chemical_group, df_chemicals,food_group):
    
    #create list with chemicals in chemical group
    
    chemicals_list = sorted(list(df_chemicals.loc[df_chemicals['Chemical Group'] == selected_chemical_group]['Chemical']))
    
    card_list=[create_productlist_card(food_group)]
    
    for x in chemicals_list:
        
    
        card_list.append(create_chemical_card(dfin, food_group, x))
        
        
        
    
   # print(card_list) 
    return card_list



dbc_css = "https://cdn.jsdelivr.net/gh/AnnMarieW/dash-bootstrap-templates/dbc.min.css"
app = Dash(__name__, external_stylesheets=[dbc.themes.SANDSTONE, dbc_css])



app.layout = dbc.Container(
    [dbc.Row([
        html.Div([
            html.H2(id="h2header"),
            
            
            ], className='col-md-7'),
        html.Div([ dcc.Dropdown(id='dropdown_food',  options=[
        {'label': i, 'value': i} for i in df_grouped_blinded_names['blinded_name'].unique()
    ], multi=False, value='Almond milk', placeholder='Filter food category...')], className = "col-md-3"),
        html.Div([dcc.Dropdown(id='dropdown_chemicalgroups', options=[
       {'label': i, 'value': i} for i in df_chemicals['Chemical Group'].unique()
   ], multi=False, value='Phthalates' , placeholder='Filter chemical group...')],  className = 'col-md-2')
        ], style={"position":"fixed", "top": "0", "left": "0", "width": "100%","height":"100px",
                                           "backgroundColor":"lightblue","zIndex":"1000", "margin":"0",
                                           "padding": "1rem", "display":"flex", "alignItems":"center"}),   
     
     
     
     dbc.Row([
        dbc.Col([
            
            html.Div(id="bargrid", style={"display": "flex", "flexWrap":"wrap"} , children=bar_chart_grid(df_grouped_blinded_names, 'Phthalate substitutes', df_chemicals,'Baby formula'))

            #dcc.Graph(id="scatter-plot", figure = create_bar_chart(df_grouped_blinded_names, 'Baby formula')),
            
           
            
            ], className = 'col-md-12')

          
        ], style={"marginTop": "120px"}),
        #add to row link to https://www.plasticlist.org/
        dbc.Row([html.P('Data: PlasticList. "Data on Plastic Chemicals in Bay Area Foods". plasticlist.org. Accessed Jan 10, 2025.')])
], style={"marginTop": "2rem"})


@app.callback( Output('bargrid', 'children'),
              Output('h2header', 'children'),
    #          Output('productlist', 'children'),
              Input(component_id='dropdown_food', component_property='value'),
              Input(component_id='dropdown_chemicalgroups', component_property='value')
              
              )





def update_job_data(selected_food_group, selected_chemical_group):
    
    
    newgrid =bar_chart_grid(df_grouped_blinded_names, selected_chemical_group, df_chemicals, selected_food_group)
    
    samples = str(df_grouped_blinded_names.loc[df_grouped_blinded_names['blinded_name']==selected_food_group]['number_of_samples'].item())
    products = str(df_grouped_blinded_names.loc[df_grouped_blinded_names['blinded_name']==selected_food_group]['number_of_different_products'].item()) 
    h2 = f"{selected_food_group}: {samples} sample(s), {products} different product(s)"   
   
    
    return newgrid,h2





app.run_server(debug=True)